
Advanced Shell Usage I

• Built-ins

• Different Shell Versions

• Ways a Shell Can Be Created

• Your Login Shell

• Interactive Non-login Shells

• Non-interactive Shells

• Creating Startup Files

• Running a Startup File after a Change has been Made

• Commands that are Symbols

Built-ins

• Not all commands can be found on disk as executable
files; some are actually contained in the shell itself

• Such commands are called built-ins

• When you run a built-in, the shell does not have to
create a new process

o Instead, the shell calls a procedure in its own code to perform
the task, so no sub-process is created

o This makes execution faster

Built-ins

• If there is an executable file with the same name as a
built-in, then the shell will run the built-in instead of the
file; for example -- echo

• echo is a built-in

• There is also an executable version of echo on the disk,
that you can see with the which command

$ which echo
/bin/echo

Built-ins

• If you want to run the disk version of echo you have to

specify the pathname
$ /bin/echo foo
foo

• Most built-ins have no executable counterpart on disk

• Running which on such a command will find nothing
$ which bg
$

Built-ins

• The type command will confirm this

$ type bg
bg is a shell builtin

• type is also a built-in

$ type type
type is a shell builtin

Different Shell Versions

• The shell we have been using is Bash

• Bash stands for Bourne again shell

o The original Bourne shell was written by Steve Bourne at
AT&T's Bell Laboratories

o The original Bourne shell -- the sh shell – is still with us.

• Many scripts are needed to set up and maintain Linux
and Unix

Different Shell Versions

• Many of these scripts are quite old and were written
before the Bash shell

o Those scripts are still in use

o There are subtle differences between different shells

o It's best to run a script in the shell for which it was written

• Debian Linux and its offshoots use a stripped-down
version of Bash called Dash

o Dash is much smaller than Bash

Different Shell Versions

o Dash is designed only to run scripts and has no interactive
features

o Its memory footprint is small, so it loads and executes scripts
faster than Bash

• System V Unix introduced the Korn shell, which was
written by David Korn

o It introduced aliases and command line editing

o It also introduced other features that are now found in Bash

Different Shell Versions

• A standard exists for how shells should run on Unix that
specifies how they must work

o It was created by Portable Application Standards Committee of
the IEEE (Institute of Electrical and Electronics Engineers)

o It is called POSIX (Portable Operating System Interface) 1003.2

• The GNU community is working on making Bash fully
compliant with POSIX

o Until then you can run bash with the --posix option

o This will make bash more compatible with the POSIX standard

Ways a Shell Can Be Created

• There are three ways a user can run a shell

o Login shells

o Interactive non-login shells

o Non-interactive shells

• There are subtle differences between these three types

• We'll concentrate on login shells in this course, but you
should be aware of the existence of the other shell types

Your Login Shell

• When you first login to Unix, you are running a shell

• This shell is your login shell

• Which shell version you run is determined by the SHELL

system variable
$ echo $SHELL
/bin/bash

• In Ubuntu, the default shell version is Bash

Your Login Shell

• When your login shell starts up, it runs the commands
found in /etc/profile

• This is a file customized by the sys-admin for all users

• You can create your own customizations in a startup
file, in your home directory

• That file must have one of these names
.bash_profile
.bash_login
.profile

Your Login Shell

• If there is more than one of these files in your home
directory, then bash will each execute them in the order

given above

• We will use .bash_profile

Interactive Non-login Shells

• The shell is a program, just
like cat or ls

• You can run another shell
as a sub-shell of your
current shell by typing the
name of the shell at the
command line

$ ps
PID TTY TIME CMD

12778 pts/1 00:00:00 bash
12969 pts/1 00:00:00 ps

$ bash

$ ps
PID TTY TIME CMD

12778 pts/1 00:00:00 bash
12970 pts/1 00:00:00 bash
12973 pts/1 00:00:00 ps
$

Interactive Non-login Shells

• Notice that there are two bash processes

• When you run script to generate a typescript file you

are working inside an interactive non-login shell

• Your login bash shell is still running, but...

o You are now running a second bash ...

o Which is running inside your login bash shell as a sub-shell

o This sub-shell is the second type of shell...

Interactive Non-login Shells

o It is not a login shell because you ran this shell from the
command line when you were already logged in

o Rather, it is an interactive non-login shell

• It is interactive because you can type commands to it
through the keyboard, but it is not the shell you got
when you logged in

• A non-login interactive shell is a shell that you create
without having to enter a password

Interactive Non-login Shells

• The commands in the startup files named above
.bash_profile
.bash_login
.profile

are NOT run before starting this kind of shell

• Instead, the commands found in .bashrc are run for a

non-login interactive shell

• You are not limited to running Bash...

Interactive Non-login Shells

• You can also run other shells, such as sh , in a sub-shell
$ ps
PID TTY TIME CMD

19874 pts/27 00:00:00 bash
20500 pts/27 00:00:00 ps

$ sh

$ ps
PID TTY TIME CMD

19874 pts/27 00:00:00 bash
20510 pts/27 00:00:00 sh
20526 pts/27 00:00:00 ps

Interactive Non-login Shells

• You leave an interactive login shell by typing exit

$ ps
PID TTY TIME CMD

19874 pts/27 00:00:00 bash
20737 pts/27 00:00:00 ps

$ sh

$ ps
PID TTY TIME CMD

19874 pts/27 00:00:00 bash
20743 pts/27 00:00:00 sh
...

...
20751 pts/27 00:00:00 ps

$ exit
exit

$ ps
PID TTY TIME CMD

19874 pts/27 00:00:00 bash
20771 pts/27 00:00:00 ps

Non-interactive Shells

• When you create a file of Linux commands, you have
created a shell script

• This is what you have been doing in the Class Exercises

• A shell script contains Unix commands which only a
shell can understand.

o However, your current shell goes to sleep when you run a
program.

o For that reason, your shell has to create a sub-shell to run the
commands

Non-interactive Shells

• Such a shell is called a non-interactive shell

• There is no standard startup file for such a shell

• You can create a startup file for non-interactive shells if
you put name of the file in the shell variable BASH_ENV

Creating Startup Files

• A startup file contains Unix commands that are run just
before you get a prompt

• Bash normally uses two startup files

.bash_profile

.bashrc

• .bash_profile commands are run before you get a

prompt in a login shell

Creating Startup Files

• .bashrc commands are run before you get a prompt in

an interactive, non-login shell

• .bash_profile is where you define variables

• We will not be talking much about .bashrc , which most
Ubuntu installations only use .bashrc when running a GUI

• Every time you open a window in a Linux GUI, you are
creating an interactive non-login shell, which can be
customized in .bashrc

Running a Startup File after a
Change has been Made

• Usually, when you change a startup file you want the
changes to take place immediately

• But, if you made a change to .bash_profile , the

changes won't take effect until the next time you login

• Unix has a way to make the changes take effect
immediately – by running the source command.

source .bash_profile

Running a Startup File after a
Change has been Made

• source is a built-in

$ which source
$

• Another you may see is the character . , which is also
often used to make the changes immediately

$. .bash_profile
$

• But, source is fine for now!

Commands that are Symbols

• Unix has some commands that are symbols, rather than words

• I'll just mention them now – and go into greater detail in future classes

() Runs whatever commands are enclosed in the parentheses in a sub-shell

$()

Command substitution: Runs the commands enclosed in the parentheses in a subshell and

returns their value to the command line, replacing the dollar sign, the parentheses and

everything in them with this value.

(())
Evaluates an arithmetic expression: By default, Unix treats everything as text, but this

command evaluates whatever it encloses as a numerical, rather than a string, expression

$(())
Arithmetic expansion: Evaluates an arithmetic expression and returns its value at that place

on the command line

[] The test command: Used to evaluate a boolean expression in constructs like if clauses

[[]] The conditional expression: Similar to [] but adds string comparisons

