
I/O and Shell Scripting

• File Descriptors

• Redirecting Standard Error

• Shell Scripts

• Making a Shell Script Executable

• Specifying Which Shell Will Run a Script

• Comments in Shell Scripts

File Descriptors

• Resources are given to each process when it is created

• Every time the shell creates a process, it gives that
process connections to three "files":

o Standard input

o Standard output

o Standard error

• Any program can open other files, besides these three
standard "files"

File Descriptors

• So, how does Unix keep track these multiple files?

• It does so through file descriptors

• File descriptors are

o data structures that Unix creates to handle access to files for
processes

o the abstract representation of the files that are connected to
a process

o Each file descriptor is assigned a positive number, the first of
which is 0

File Descriptors

• Think of a file descriptor as an integer that represents a file

• Standard input, standard output,

and standard error each have
their own file descriptors

• So...

o While we think of standard input, standard output, and

standard error,...

o ...Unix thinks of the file descriptors 0, 1, and 2

• Most of the time, you do not have to worry about file
descriptors – though they can appear in complex scripts.

Name File Descriptor

Standard input 0

Standard output 1

Standard error 2

Redirecting Standard Error

• Standard error is the "file" into which error messages are
usually sent

• Redirecting standard error allows a program to separate
its normal output from its error messages

• To redirect standard input, we use the less than
symbol < followed by a file pathname

• Consider the following example...

Redirecting Standard Error

$./repeat.sh < test.txt
Enter several lines
Type X on a line by itself
when done

You entered

123456789
abcdefg
987654321
hijklmnop
foo
bar
bletch
X

• < is really a shorthand for a
notation using file descriptors

• When you type
./repeat.sh < test.txt

Unix thinks of this as
./repeat.sh 0< test.txt

• where the 0 in front of the
greater than sign is the file
descriptor for standard input

Redirecting Standard Error

• Similarly, when we use output redirection

$ echo Hello there > hello.txt

• Unix thinks of this as meaning

$ echo Hello there 1> hello.txt

• Again, the file descriptor precedes the redirection
symbol >

• So how do we redirect standard error?

Redirecting Standard Error

• We can redirect standard error by placing a 2 in front of the
greater than symbol >

$ ls xxxx
ls: cannot access xxxx: No such file or directory

$ ls xxxx 2> error.txt

$ cat error.txt
ls: cannot access xxxx: No such file or directory

• When we redirected standard error using 2> Unix sent the
error messages to the file error.txt , not to the screen

Redirecting Standard Error

• When we redirected standard error using 2> Unix sent
the error messages to the file error.txt not to the

screen

• You can redirect both standard output and standard
error to the same file

• You do this with ampersand and greater-than symbols
together &>

• For example...

Redirecting Standard Error

$ cat foo1.txt foo2.txt
foo57.txt
foo to you
bar to everyone else
bletch to the universefoo
foo foo
bar bar bar
bletch
cat: foo57.txt: No such file
or directory

$ cat foo1.txt foo2.txt
foo57.txt &> error.txt
...

...
$ cat error.txt
foo to you
bar to everyone else
bletch to the universefoo
foo foo
bar bar bar
bletch
cat: foo57.txt: No such file
or directory

Shell Scripts

• A shell script is a file that contains Unix commands with
their options and arguments

• You can think of a shell script as a collection of
command line entries

• When the shell script is executed...

o Each line of the script is run in turn...

o ...as if you were entering them at the command line, one after
the other

Shell Scripts

• A shell script can use any shell feature that is available
at the command line except those features which are
provided by tty specifically:

o Command line editing (arrow keys, control key
combinations)

o Pathname completion (tab to get more of a filename)

o The history mechanism (up arrow to recall previous
command line)

Shell Scripts

• However, other shell features are available to you!

• You can use ambiguous file references in a shell script.
That is, you have full use of the metacharacters ? , * ,
and []

• You can use redirection in a shell script, as well as pipes

• Unix also provides control structures

o If statements

o Loops

Shell Scripts

• Control structures allow you to change the path taken
through the script

• We will learn more about those soon...

• The shell executes the script one line at a time, exactly
as it would if you were typing in the line at the terminal

Making a Shell Script Executable

• You can run a shell script without using bash, if you

give the script both read and execute permissions

o You need read permission because the shell has to read the
contents of the script

o You need execute permission so the script can be run without
explicitly using bash

• If you try to run a script without both permissions you
will get an error

Making a Shell Script Executable

• For example...
$ ls -l cheer.sh
-rw-rw-r-- 1 ghoffmn grad 13 Oct 29 14:23 cheer.sh

$ cat cheer.sh
#! /bin/bash

this file roots for the home team

echo "Let's go Red Sox!"

$./cheer.sh
-bash: ./cheer.sh: Permission denied

Making a Shell Script Executable

• Of course, you can set these permissions using chmod

• Normally, you would give a shell script file 755 permissions

o The owner can read, write and execute

o The group and everyone else can read and execute
$ chmod 755 cheer.sh

$ ls -l cheer.sh
-rwxr-xr-x 1 ghoffmn grad 13 Oct 29 14:23 cheer.sh

$./cheer.sh
Go Sox!

Making a Shell Script Executable

• All scripts for this course must have 755 permissions

set

• This is necessary so that I will be able to run them
myself

• Moreover, it will help establish good habits

• Points will be deducted if you do not do this

Specifying Which Shell Will
Run a Script

• The shell is just a program that

o reads what you enter at the command line and...

o ...runs programs for you

• It stands between you and the operating system

• When the shell runs a program for you, it normally
sleeps until the program is finished – unless you tell the
shell to run the command in the background

Specifying Which Shell Will
Run a Script

• When the shell runs a shell script, it creates a new shell
inside the process that will run the script

o Normally, this sub-shell will be the same kind of shell as your
login shell

o So, if your login shell is Bash, a Bash sub-shell will run the
script

• There are significant differences between the various
shells that come with Unix and Linux

Specifying Which Shell Will
Run a Script

• What if you need to run the script in a different shell?

o It is always best to run a script in the same shell used by the
programmer who wrote the script

o Unix provides a way to specify which shell to run when a
script is executed

• It is called the hashbang line or sometimes
the shebang line. Example:

#! /bin/bash

Specifying Which Shell Will
Run a Script

• That's because the first two characters on the line must
be the following...

o a hash mark (number symbol, pound sign, etc.): #

o followed by an exclamation mark: !

• The exclamation mark is sometimes called “bang”

• After these two characters comes the absolute
pathname of the shell which will run with the script

Specifying Which Shell Will
Run a Script

• The pathname following #! must be an absolute
pathname because you don't know where the user will
be when the script is run

o The hashbang line tells your current shell which shell to use
to run your script

o The hashbang line must be the first line in the script

• Unix looks at the first few characters of a file before
running a script...

Specifying Which Shell Will
Run a Script

• If it sees #! , then it interprets what follows as the
pathname of the program that should run the script

• It is good form to always use a hashbang line, even when
this is not necessary

• You may follow hashbang with a couple of spaces before
the pathname

• To show you that this really works, I'm going to run the
script shell_test_1.sh

Specifying Which Shell Will
Run a Script

$ cat shell_test_1.sh
#! /bin/sh
ps -f

$./shell_test.sh
UID PID PPID C STIME TTY TIME CMD
ghoffmn 710 709 0 13:25 pts/1 00:00:00 -bash
ghoffmn 2741 710 0 15:35 pts/1 00:00:00 /bin/sh
./shell_test.sh
ghoffmn 2742 2741 0 15:35 pts/1 00:00:00 ps -f

• Here, we indicated that this script should be run with
the sh shell, specifically...

Specifying Which Shell Will
Run a Script

• We did this by specifying it in the hashbang line
#! /bin/sh

• Now, compare this with shell_test_2.sh
$ cat shell_test_2.sh
ps -f

$./shell_test_2.sh
UID PID PPID C STIME TTY TIME CMD
ghoffmn 710 709 0 13:25 pts/1 00:00:00 -bash
ghoffmn 2893 710 0 15:41 pts/1 00:00:00 -bash
ghoffmn 2894 2893 0 15:41 pts/1 00:00:00 ps -f

Specifying Which Shell Will
Run a Script

• The second script has no hashbang line, so the script
was run in a Bash shell

• The shell did this because I did not tell it otherwise

• You can leave out the hashbang line and still run a script
without calling bash , but...

• ...you must use a hashbang line for scripts written in
scripting languages like Perl and Python

Specifying Which Shell Will
Run a Script

• Here is a simple Python script that does not have
hashbang line...
$ cat hello_1.py
print ("Hello world!")

• It has read and execute permissions
$ ls -l hello_1.py
-rwxrwxr-x 1 ghoffmn grad 21 Jun 19 17:48 hello_1.py

• But, when I try to run it, there is a problem...

Specifying Which Shell Will
Run a Script

$./hello_1.py
Warning: unknown mime-type for "Hello world!" --
using "application/octet-stream"
Error: no such file "Hello world!"

• I can only run this script by calling the Python interpreter
$ python hello_1.py
Hello world!

• Now we'll look at the same script – but with a hashbang
line that uses the Python interpreter...

Specifying Which Shell Will
Run a Script

$ cat hello_2.py
#! /usr/bin/python

print ("Hello world!")

• I can run this script directly
$./hello_2.py
Hello world!

Comments in Shell Scripts

• Programs are written by people for machines

• But, programs also have to be readable for the people...

o Who write the program

o Who maintain the program

o Who use the program

• To make clear what is happening inside a program, use
comments

Comments in Shell Scripts

• Comments are text which is ignored by whatever program is
running the script – i.e., they are only for people to read

• Anything following a hash mark # is a comment – except
for the hashbang line, of course! Example:

$ cat comment_test.sh
#! /bin/sh
demonstrates that comments do not affect the
way the script runs
echo Hello there

$./comment_test.sh
Hello there

Comments in Shell Scripts

• Comments are a way to document a program within
the text of the program itself

• This sort of documentation is extremely important

o You may create a script today and not use it for a couple
of months

o When you need to change it, you may have forgotten
how it works

o A few well-placed comments can save you hours of work

Comments in Shell Scripts

• It is good practice to place a
comment at the top of the shell
script, after the hashbang line

• This comment should say what
the script does

• You should also comment any
part of a script that does
something less than obvious

• I'll take off points if you do not

$ cat bother.sh
#!/bin/bash

keeps printing something
to the terminal until it
is killed

while [6 -lt 10]
do
sleep 5
echo "Excuse me"
done

