Advanced Shell

- Separating and Grouping Commands

| (pipe) and & (ampersand) as
Command Separators

- Continuing a Command onto the
Next Line

- Using Parentheses () to Run a Group
of Commands in a Subshell

- The Directory Stack

o dirs - Displays the Directory Stack

o pushd - Pushes a Directory onto the Stack
o popd - Pops a Directory off the Stack

Usage 11

- Shell Variables

o Scope

= Local Variables

= Global Variables
o Keyword Shell Variables

o Important Keyword Shell
Variables

o User-created Variables

Separating and Grouping Commands

- Every time you hit Enter , the shell tries to execute your
command line entry

- So far, we have only run one command from the
command line at a time — except for pipes

- You can enter more than one commands on the
command ling, if you separate them with a semi-
colon :

- For example...

Separating and Grouping Commands

$ cd ;
Here are the
total 45
drwxr-xr-x

drwxr-xr-x
-rw-r—--r—-

echo

—-rw-r—--r--
-rw-r—--r--
—-rwW-r—--r--

|

]

-

|

|

|

|

|

|

|
HFNRERRRERO O

—-rW-r—--r--

- When you hit Enter , each command is executed in the

"Here are the contents of my home directory:" ;

contents of my home directory:

it244gh
root

it244gh
it244gh
it244gh
it244gh
it244gh
it244gh
it244gh
it244gh

libuuid
root

libuuid
libuuid
libuuid
libuuid
libuuid
libuuid
libuuid
libuuid

1024
0

0
2285
6979
44
38
16
512
1826

2011-10-16
2011-10-16
2011-09-07
2011-09-07
2011-10-15
2011-10-12
2011-10-11
2011-10-12
2011-09-10
2011-09-14

order it was typed at the command line.

12:
:00
:06
:06
20:
15:
15:
: 27
18:
10:

14
11
11

14

47

34
33
38

30
00

ls

-al

.addressbook
.addressbook. lu
.bash history
.bash profile
.bashrc
.bash rc
.cache

.cshrc

~

| (pipe) and & (ampersand) as
Command Separators

- The semi-colon ; is a command separator

- It separates multiple commands on a single command
line

- These characters are a/lso command separators:

o The pipe character |

o The ampersand character &

| (pipe) and & (ampersand) as
Command Separators

- When we separate commands with the
pipe | character...

o Each command takes its input from the previous command

o Each command is a separate process, though the pipeline is a
single job

- We use an ampersand & after a command to make the
command run in the background
./bother.sh &

| (pipe) and & (ampersand) as
Command Separators

- When we do this, two things happen

o The command is disconnected from the keyboard

o The command will run at the same time as the next
command you enter at the terminal

- But, the ampersand is a/so a command separator

. So...we can use it to run more than one command at the
same time...

| (pipe) and & (ampersand) as
Command Separators

- For example:

S ./bother.sh > /dev/null & ./bother.sh > /dev/null &
./bother.sh > /dev/null & jobs

[1] 1794

[2] 1795

[3] 1796

[1] Running ./bother.sh > /dev/null &
[2] - Running ./bother.sh > /dev/null &
[3]+ Running ./bother.sh > /dev/null &

- Here, we created three jobs with one command line

| (pipe) and & (ampersand) as
Command Separators

- We can kill a// three jobs using command substitution
$ kill $(jobs -p) ; Jjobs

[1] Running ./bother.sh > /dev/null
[2]- Running ./bother.sh > /dev/null
[3]+ Running ./bother.sh > /dev/null
[1] Terminated ./bother.sh > /dev/null
[2]- Terminated ./bother.sh > /dev/null
[3]+ Terminated ./bother.sh > /dev/null

| (pipe) and & (ampersand) as
Command Separators

- Notice that we used the semi-colon to run ftwo
commands on the same command line

o Since both these jobs are running in the foreground, they run
sequentially one right after the other

o Each command has to wait for the previous command to
finish before it starts

Continuing a Command onto the
Next Line

- Unix will let you type as long a command line as you like

- If you reach the end of your session window while
typing, a command your text will wrap to the next line:

$ echo asdfasdfasdfasdfasdfasdfasdf
asdfasdfasdfasdfasdfasdfasdfasdfasd
fasdfasdfasdfasdfasdfasdfasdfasdfas
dfasdfasdfasfads Done

asdfasdfasdfasdfasdfasdfasdfasdfasd
fasdfasdfasdfasdfasdfasdfasdfasdfas
dfasdfasdfasdfasdfasdfasdfasdfasdfa
sdfasfads Done

Continuing a Command onto the
Next Line

- If you then expand the window, you can see more text

on each line:

S echo asdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfas
dfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasd
fasdfasdfasfads Done

asdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfa
sdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfas
dfasfads Done

- Unix thinks that the text above is only two lines
o Your command line entry
o The one line output

Continuing a Command onto the
Next Line

- But...sometimes it helps to break a long command into
more than one line

- You can do this by typing a backslash \
followed immediately by the Enter key

$ echo A man \

> A plan \

> A canal \

> Panama

A man A plan A canal Panama

Continuing a Command onto the
Next Line

- Here, we are escaping the newline character at the end
of the line

o Escaping turns off the special meaning of a character

o The backslash above turns offthe special meaning of newline
— which is normally for the shell to run the command when it
sees newline

- The newline character is sent when you hit

o Enter on a PC
o Return on a Mac

Continuing a Command onto
the Next Line

- Backslash only escapes the character immediately
following it

o This trick won't work if you put a space before the newline

o Then the backslash only operates on the space not the newline

. After hitting \ and newling, the shell responds with the
greater than symbol >

- This Is the secondary prompt , which means that the shell
s telling you it expects more input

Continuing a Command onto
the Next Line

- The normal prompt is your primary prompt

o You get the primary prompt when the shell is waiting for a
command

o You get the secondary prompt when the shell is waiting for
the continuation of a command already started

Use () to Run a Group of Commands
in a Subshell

- Sometimes, you want to run a group of commands in a
shell of its own

o You can do this by putting the commands within parentheses
(ed ~/bar ; tar-xvf -)

o The shell creates a sub-shell and runs the commands in that
sub-shell

o Why would you want to do this?

Use () to Run a Group of Commands
in a Subshell

- Consider the following command line entry
cd ~/foo ; tar -c¢f - . | (cd ~/bar ; tar-xvf -)

. It tells the shell to...

o Go to a certain directory
o Run tar on the files you find there

o Send the results to standard input =

o Go to another directory
o Recreate the files from standard input =

Use () to Run a Group of Commands
in a Subshell

- When using tar, = means either standard /nput or
standard ouitput, depending upon the context

- Without the sub-shell...

o the output of the first tar would go to ed, and...

o ed would /gnore 1, since it already has the only parameter
It needs

- But...the second tar is waiting for something from
standard input

The Directory Stack

- Moving back to a previous directory can be a pain
o You might have to type a /ong pathname

o Even worse, you might forget where you were

- Bash provides the girectory stack mechanism to make this easier

o The directory stack keeps tracks of each directory you enter by
putting them onto a stack

= The stack operates on the principle of last in, first out

= You can go back to a previous directory by using, and removing, the last
directory from the stack

o You can keep doing this until you get where you want to be

The Directory Stack

- There are three commands that use the directory stack:

odirs

o pushd

o popd

- cd keeps no record of where you have been

- pushd and popd use the directory stack to change your
location and update the directory stack

dirs - Displays the Directory
Stack

. A stack is a list with unusual properties
. It is a LIFO data structure, which stands for
Last In First Out

- Stacks are a well-known data structure in programming

o They allow you to go back in time to previous values of some
Important variable

o A physical example of a stack can be found in some cafeterias
In the dish stack...

dirs - Displays the Directory
Stack

- The dish stack:

o There is a circular hole in the counter which opens onto a
metal cylinder with a spring at the bottom

= An attendant puts a bunch of dishes into the cylinder
= The next customer takes a dish from the top of the stack

« That dish was put in last

o Last in, first out

dirs - Displays the Directory Stack

- dirs displays the current contents of the directory stack

- If the stack is empty, dirs simply displays the current

directory

Spwd
~/1t244/hw5

S dirs
~/1t244/hw5

- dirs always uses a tilde ~ when referring to your
home directory

pushd - Pushes a Directory onto
the Stack

- In programming, putting something onto a stack is
called a push

- pushd changes your current directory, just like ed, but
It also adds your new directory to the directory stack

- When used with an argument, pushd

o Places the new directory on the stack
o Displays the current contents of the directory stack
o Moves to the new directory

Eushd - Pushes a Directorz onto the Stack

- Let's look at an example:

S pwd
/home/it244gh/it244/hw5

S dirs
~/1t244/hw5

$ pushd ~ghoffmn

$ pwd
/home/ghoffmn

S dirs
/home/ghoffmn ~/it244/hw5

pushd - Pushes a Directory onto
the Stack

- When used without an argument pushd

o Swaps the positions of the first two directories on the
directory stack

o Displays the current contents of the directory stack

o Moves to the new top directory the directory stack

- Let's look at an example...
$ pushd examples it244/
~/examples it244 ~

pushd - Pushes a Directory onto
the Stack

$ pushd examples it244/
~/examples it244 ~

$ pushd ~it244gh
/home/it244gh ~/examples it244 ~

$ pushd it244/work/
/home/it244gh/it244/work /home/it244gh ~/examples it244 ~

$ pushd
/home/it244gh /home/it244gh/it244/work ~/examples it244 ~

$ dirs
/home/it244gh /home/it244gh/it244/work ~/examples it244 ~

pushd - Pushes a Directory onto
the Stack

- You can also give pushd a plus sign followed by a
number

- If you do this, it will take you to the directory at that
position in the stack

- The directory on the top of the stack has the number 0

popd - Pops a Directory off the
Stack

- In programming, removing a value from a stack is called
a pop

» popd changes your current directory to another
directory, but it also removes a directory from the stack

» When used without an argument popd

o Removes the top directory from the stack

o Prints the current stack

o Goes to the directory it removed from the stack

popd - Pops a Directory off the

Stack
- Here is an example:
$ pwd $ popd
/home/it244gh/it244/hw5 ~/it244/hw5
$ dirs $ pwd | |
~/it244/hw5 /home/it244gh/it244/hw5
$ pushd ~ghoffmn $ dirs
/home/ghoffmn ~/it244/hwb ~/it244/hw5

$ pwd
/home/ghoffmn

popd - Pops a Directory off the
Stack

- You can also give popd a plus sign followed by a
number

- The directory with that number will be removed from
the stack, but you will stay in the current directory

Shell Variables

- A variable is a name given to a place in memory that
holds a value

- Shell variables are variables that are defined inside a
shell and can be used inside the shell

- To get the value of a shell variable, put a dollar
sign $ in front of the variable name

S echo S$SPATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:
/bin: /usr/games

Shell Variables

- Some variables are set and maintained by the shell itself

- They are called keyword shell variables
o Or just keyword variables

o A keyword is a word with special meaning to the shell
o Some of these variables are defined in /etc/profile

o Many of these keyword variables can be changed by the user

- Other variables can be created by the user. They are
called are called user-created variables

Shell Variables

- The environment in which a variable can be used is
called the scope

- Shell variables have two scopes
o Local
o Global

LLocal Variables

- Localvariables only have meaning in the shell in which
they are defined

- To create a local variable, use the following format
VARIABLE NAME=VALUE

- There cannot be any spaces — on either side of the equal
sigh — when setting Bash variables. Example:

S foo=bar

S echo Sfoo
bar

L.ocal Variables

- Variables are Joca/unless you explicitly make them
global

- If the value assigned to a variable has spaces or tabs,

you must guote it
S hello='Hello there'

S echo Shello
Hello there

- Local variables only exist in the shell in which they are
created

L.ocal Variables

S foo=bar
- If you run a shell script,
S echo $foo

that script cannot see your paz

local variables because:
$ cat print foo.sh

o the script is running in a #!/bin/bash
sub-shell, and... #
Prints the value of the
o the local variables are only variable foo

defined in the shell that
launched the script

echo foo = S$foo

$./print foo.sh
foo =

L.ocal Variables

- Notice that the script printed no value for foo
$./print foo.sh
foo =

- The variable £oo is defined only in the shell
which calls print foo.sh

- It does not exist in the sub-shell that runs the script so
It has no value in the sub-shell

LLocal Variables

. $ echo $foo
- Bash allows you to assign bar

a value to a variable used $ foo=bletch ./print foo.sh

: : foo = bletch
In a script on the command

S echo $foo

line that calls the script: bar

- Notice that the value of foo is different in the running
script from its value in the shell that /aunched the script

- A variable defined at the command line, before running a
script, only exists in the sub-shel//that runs the command

Global Variables

- Global variables are $ echo $foo
variables that are bar

o defined in one shell and...
- S export foo=bletch
o have meaning in all sub-

shells created from that shell $ echo $foo

- In Bash, you define a globa/l bletch

variable by preceding the _
variable name with the $./print_foo.sh
keyword export foo = bletch

Global Variables

- Usually, global variables

are declared in a startup
file like .bash profile

- If you run the env
command wrthout an

argument, it prints the
values of global variables

S env
TERM=xterm-color
SHELIL=/bin/bash

SSH CLIENT=66.92.76.
O 53785 22

OLDPWD=/home/it244gh
SSH TTY=/dev/pts/8
USER=it244gh

Keyword Shell Variables

- Keyword shell variables, also called keyword variables,
have special meaning to the shell

- They have short, mnemonic names

- By convention, the names of keyword variables are
always CAPITALIZED

- Most keyword variables can be changed by the user
- This is normally done in the startup file .bash profile

Important Variabe

Keywc rd She 11 The absolute pathname of your home
.y 1A direct
Variables o

The list of directories the shell will search
when looking for the executable file
associated with a command you entered
at the command line

- There are a number of
keyword variables that
affect your Unix
session

The absolute pathname of your default
shell

The absolute pathname of the file that
holds your mail

» Some of the more
Important ones are...

Your command line prompt - what you
see after entering each command

The secondary prompt - what you see if
you continue a command to a second line

User-created Variables

- User-created variables are any variables that you create

- By convention, the names of user-created variables are
Jower case
S foo=bling

S echo S$foo
bling

- User-created variables can be either /oca/or globalin
scope

