
Advanced Shell Usage II

• Separating and Grouping Commands

• | (pipe) and & (ampersand) as
Command Separators

• Continuing a Command onto the
Next Line

• Using Parentheses () to Run a Group
of Commands in a Subshell

• The Directory Stack

o dirs - Displays the Directory Stack

o pushd - Pushes a Directory onto the Stack

o popd - Pops a Directory off the Stack

• Shell Variables

o Scope

 Local Variables

 Global Variables

o Keyword Shell Variables

o Important Keyword Shell
Variables

o User-created Variables

Separating and Grouping Commands

• Every time you hit Enter , the shell tries to execute your
command line entry

• So far, we have only run one command from the
command line at a time – except for pipes

• You can enter more than one commands on the
command line, if you separate them with a semi-
colon ;

• For example...

Separating and Grouping Commands

$ cd ; echo "Here are the contents of my home directory:" ; ls -al ~

Here are the contents of my home directory:

total 45
drwxr-xr-x 6 it244gh libuuid 1024 2011-10-16 12:47 .
drwxr-xr-x 5 root root 0 2011-10-16 14:00 ..
-rw-r--r-- 1 it244gh libuuid 0 2011-09-07 11:06 .addressbook
-rw------- 1 it244gh libuuid 2285 2011-09-07 11:06 .addressbook.lu
-rw------- 1 it244gh libuuid 6979 2011-10-15 20:34 .bash_history
-rw-r--r-- 1 it244gh libuuid 44 2011-10-12 15:33 .bash_profile
-rw-r--r-- 1 it244gh libuuid 38 2011-10-11 15:38 .bashrc
-rw-r--r-- 1 it244gh libuuid 16 2011-10-12 14:27 .bash_rc
drwx------ 2 it244gh libuuid 512 2011-09-10 18:30 .cache
-rw-r--r-- 1 it244gh libuuid 1826 2011-09-14 10:00 .cshrc
...

• When you hit Enter , each command is executed in the
order it was typed at the command line.

| (pipe) and & (ampersand) as
Command Separators

• The semi-colon ; is a command separator

• It separates multiple commands on a single command
line

• These characters are also command separators:

o The pipe character |

o The ampersand character &

| (pipe) and & (ampersand) as
Command Separators

• When we separate commands with the
pipe | character...

o Each command takes its input from the previous command

o Each command is a separate process, though the pipeline is a
single job

• We use an ampersand & after a command to make the
command run in the background
./bother.sh &

| (pipe) and & (ampersand) as
Command Separators

• When we do this, two things happen

o The command is disconnected from the keyboard

o The command will run at the same time as the next
command you enter at the terminal

• But, the ampersand is also a command separator

• So...we can use it to run more than one command at the
same time...

| (pipe) and & (ampersand) as
Command Separators

• For example:
$./bother.sh > /dev/null & ./bother.sh > /dev/null &
./bother.sh > /dev/null & jobs

[1] 1794

[2] 1795

[3] 1796

[1] Running ./bother.sh > /dev/null &

[2]- Running ./bother.sh > /dev/null &

[3]+ Running ./bother.sh > /dev/null &

• Here, we created three jobs with one command line

| (pipe) and & (ampersand) as
Command Separators

• We can kill all three jobs using command substitution
$ kill $(jobs -p) ; jobs

[1] Running ./bother.sh > /dev/null &

[2]- Running ./bother.sh > /dev/null &

[3]+ Running ./bother.sh > /dev/null &

[1] Terminated ./bother.sh > /dev/null

[2]- Terminated ./bother.sh > /dev/null

[3]+ Terminated ./bother.sh > /dev/null

| (pipe) and & (ampersand) as
Command Separators

• Notice that we used the semi-colon to run two
commands on the same command line

o Since both these jobs are running in the foreground, they run
sequentially one right after the other

o Each command has to wait for the previous command to
finish before it starts

Continuing a Command onto the
Next Line

• Unix will let you type as long a command line as you like

• If you reach the end of your session window while
typing, a command your text will wrap to the next line:

$ echo asdfasdfasdfasdfasdfasdfasdf
asdfasdfasdfasdfasdfasdfasdfasdfasd
fasdfasdfasdfasdfasdfasdfasdfasdfas
dfasdfasdfasfads Done

asdfasdfasdfasdfasdfasdfasdfasdfasd
fasdfasdfasdfasdfasdfasdfasdfasdfas
dfasdfasdfasdfasdfasdfasdfasdfasdfa
sdfasfads Done

Continuing a Command onto the
Next Line

• If you then expand the window, you can see more text
on each line:
$ echo asdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfas
dfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasd
fasdfasdfasfads Done

asdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfa
sdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfas
dfasfads Done

• Unix thinks that the text above is only two lines
o Your command line entry
o The one line output

Continuing a Command onto the
Next Line

• But...sometimes it helps to break a long command into
more than one line

• You can do this by typing a backslash \
followed immediately by the Enter key
$ echo A man \
> A plan \
> A canal \
> Panama
A man A plan A canal Panama

Continuing a Command onto the
Next Line

• Here, we are escaping the newline character at the end
of the line

o Escaping turns off the special meaning of a character

o The backslash above turns off the special meaning of newline
– which is normally for the shell to run the command when it
sees newline

• The newline character is sent when you hit

o Enter on a PC

o Return on a Mac

Continuing a Command onto
the Next Line

• Backslash only escapes the character immediately
following it

o This trick won't work if you put a space before the newline

o Then the backslash only operates on the space, not the newline

• After hitting \ and newline, the shell responds with the
greater than symbol >

• This is the secondary prompt , which means that the shell
is telling you it expects more input

Continuing a Command onto
the Next Line

• The normal prompt is your primary prompt

o You get the primary prompt when the shell is waiting for a
command

o You get the secondary prompt when the shell is waiting for
the continuation of a command already started

Use () to Run a Group of Commands
in a Subshell

• Sometimes, you want to run a group of commands in a
shell of its own

o You can do this by putting the commands within parentheses

(cd ~/bar ; tar-xvf -)

o The shell creates a sub-shell and runs the commands in that
sub-shell

o Why would you want to do this?

Use () to Run a Group of Commands
in a Subshell

• Consider the following command line entry

cd ~/foo ; tar -cf - . | (cd ~/bar ; tar-xvf -)

• It tells the shell to...

o Go to a certain directory

o Run tar on the files you find there

o Send the results to standard input -

o Go to another directory

o Recreate the files from standard input -

Use () to Run a Group of Commands
in a Subshell

• When using tar , - means either standard input or

standard output, depending upon the context

• Without the sub-shell...

o the output of the first tar would go to cd , and...

o cd would ignore it, since it already has the only parameter

it needs

• But...the second tar is waiting for something from

standard input

The Directory Stack

• Moving back to a previous directory can be a pain

o You might have to type a long pathname

o Even worse, you might forget where you were

• Bash provides the directory stack mechanism to make this easier

o The directory stack keeps tracks of each directory you enter by
putting them onto a stack

 The stack operates on the principle of last in, first out

 You can go back to a previous directory by using, and removing, the last
directory from the stack

o You can keep doing this until you get where you want to be

The Directory Stack

• There are three commands that use the directory stack:

o dirs

o pushd

o popd

• cd keeps no record of where you have been

• pushd and popd use the directory stack to change your

location and update the directory stack

dirs - Displays the Directory
Stack

• A stack is a list with unusual properties

• It is a LIFO data structure, which stands for

Last In First Out

• Stacks are a well-known data structure in programming

o They allow you to go back in time to previous values of some
important variable

o A physical example of a stack can be found in some cafeterias
in the dish stack...

dirs - Displays the Directory
Stack

• The dish stack:

o There is a circular hole in the counter which opens onto a
metal cylinder with a spring at the bottom

 An attendant puts a bunch of dishes into the cylinder

 The next customer takes a dish from the top of the stack

 That dish was put in last

o Last in, first out

dirs - Displays the Directory Stack

• dirs displays the current contents of the directory stack

• If the stack is empty, dirs simply displays the current

directory
$pwd
~/it244/hw5

$ dirs
~/it244/hw5

• dirs always uses a tilde ~ when referring to your
home directory

pushd - Pushes a Directory onto
the Stack

• In programming, putting something onto a stack is
called a push

• pushd changes your current directory, just like cd , but

it also adds your new directory to the directory stack

• When used with an argument, pushd

o Places the new directory on the stack

o Displays the current contents of the directory stack

o Moves to the new directory

pushd - Pushes a Directory onto the Stack

• Let's look at an example:
$ pwd
/home/it244gh/it244/hw5

$ dirs
~/it244/hw5

$ pushd ~ghoffmn

$ pwd
/home/ghoffmn

$ dirs
/home/ghoffmn ~/it244/hw5

pushd - Pushes a Directory onto
the Stack

• When used without an argument pushd

o Swaps the positions of the first two directories on the
directory stack

o Displays the current contents of the directory stack

o Moves to the new top directory the directory stack

• Let's look at an example...

$ pushd examples_it244/

~/examples_it244 ~

pushd - Pushes a Directory onto
the Stack

$ pushd examples_it244/
~/examples_it244 ~

$ pushd ~it244gh
/home/it244gh ~/examples_it244 ~

$ pushd it244/work/
/home/it244gh/it244/work /home/it244gh ~/examples_it244 ~

$ pushd
/home/it244gh /home/it244gh/it244/work ~/examples_it244 ~

$ dirs
/home/it244gh /home/it244gh/it244/work ~/examples_it244 ~

pushd - Pushes a Directory onto
the Stack

• You can also give pushd a plus sign followed by a

number

• If you do this, it will take you to the directory at that
position in the stack

• The directory on the top of the stack has the number 0

popd - Pops a Directory off the
Stack

• In programming, removing a value from a stack is called
a pop

• popd changes your current directory to another

directory, but it also removes a directory from the stack

• When used without an argument popd

o Removes the top directory from the stack

o Prints the current stack

o Goes to the directory it removed from the stack

popd - Pops a Directory off the
Stack

• Here is an example:
$ pwd
/home/it244gh/it244/hw5

$ dirs
~/it244/hw5

$ pushd ~ghoffmn
/home/ghoffmn ~/it244/hw5

$ pwd
/home/ghoffmn
...

...

$ popd
~/it244/hw5

$ pwd
/home/it244gh/it244/hw5

$ dirs
~/it244/hw5

popd - Pops a Directory off the
Stack

• You can also give popd a plus sign followed by a

number

• The directory with that number will be removed from
the stack, but you will stay in the current directory

Shell Variables

• A variable is a name given to a place in memory that
holds a value

• Shell variables are variables that are defined inside a
shell and can be used inside the shell

• To get the value of a shell variable, put a dollar
sign $ in front of the variable name

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:
/bin:/usr/games

Shell Variables

• Some variables are set and maintained by the shell itself

• They are called keyword shell variables

o Or just keyword variables

o A keyword is a word with special meaning to the shell

o Some of these variables are defined in /etc/profile

o Many of these keyword variables can be changed by the user

• Other variables can be created by the user. They are
called are called user-created variables

Shell Variables

• The environment in which a variable can be used is
called the scope

• Shell variables have two scopes

o Local

o Global

Local Variables

• Local variables only have meaning in the shell in which
they are defined

• To create a local variable, use the following format

VARIABLE_NAME=VALUE

• There cannot be any spaces – on either side of the equal
sign – when setting Bash variables. Example:
$ foo=bar

$ echo $foo
bar

Local Variables

• Variables are local unless you explicitly make them
global

• If the value assigned to a variable has spaces or tabs,
you must quote it
$ hello='Hello there'

$ echo $hello
Hello there

• Local variables only exist in the shell in which they are
created

Local Variables

• If you run a shell script,
that script cannot see your
local variables because:

o the script is running in a
sub-shell, and...

o the local variables are only
defined in the shell that
launched the script

$ foo=bar

$ echo $foo
bar

$ cat print_foo.sh
#!/bin/bash
#
Prints the value of the
variable foo

echo foo = $foo

$./print_foo.sh
foo =

Local Variables

• Notice that the script printed no value for foo

$./print_foo.sh

foo =

• The variable foo is defined only in the shell
which calls print_foo.sh

• It does not exist in the sub-shell that runs the script so
it has no value in the sub-shell

Local Variables

• Bash allows you to assign

a value to a variable used

in a script on the command

line that calls the script:

• Notice that the value of foo is different in the running
script from its value in the shell that launched the script

• A variable defined at the command line, before running a
script, only exists in the sub-shell that runs the command

$ echo $foo
bar

$ foo=bletch ./print_foo.sh
foo = bletch

$ echo $foo
bar

Global Variables

• Global variables are
variables that are

o defined in one shell and...

o have meaning in all sub-
shells created from that shell

• In Bash, you define a global
variable by preceding the
variable name with the
keyword export

$ echo $foo
bar

$ export foo=bletch

$ echo $foo
bletch

$./print_foo.sh
foo = bletch

Global Variables

• Usually, global variables
are declared in a startup
file like .bash_profile

• If you run the env

command without an
argument, it prints the
values of global variables

$ env

TERM=xterm-color

SHELL=/bin/bash

SSH_CLIENT=66.92.76.
9 53785 22

OLDPWD=/home/it244gh

SSH_TTY=/dev/pts/8

USER=it244gh

...

Keyword Shell Variables

• Keyword shell variables, also called keyword variables,
have special meaning to the shell

• They have short, mnemonic names

• By convention, the names of keyword variables are
always CAPITALIZED

• Most keyword variables can be changed by the user

• This is normally done in the startup file .bash_profile

Important
Keyword Shell
Variables

• There are a number of
keyword variables that
affect your Unix
session

• Some of the more
important ones are...

Variable Value

HOME
The absolute pathname of your home

directory

PATH

The list of directories the shell will search

when looking for the executable file

associated with a command you entered

at the command line

SHELL
The absolute pathname of your default

shell

MAIL
The absolute pathname of the file that

holds your mail

PS1
Your command line prompt - what you

see after entering each command

PS2
The secondary prompt - what you see if

you continue a command to a second line

User-created Variables

• User-created variables are any variables that you create

• By convention, the names of user-created variables are
lower case
$ foo=bling

$ echo $foo
bling

• User-created variables can be either local or global in
scope

