Variables and Processes

- Positional and Special - Variable Attributes
Parameters . Processes
+ Quoting and the o Process Structure

Evaluation of Variables - Process Identification

- Removing a Variable's o Executing a Command
Value

Positional and Special Parameters

- Positional and special $ 1ls bar.txt
narameters are variables set bar. txt
Dy Unix that change each § echo $7
time you enter a command o

- We have already encountered

the special parameter ? $ ls xxx

ls: cannot access xxx: No

. It contains the status code such file or directory
returned by the most recent
y $ echo $7
command

2

Positional and Special Parameters

- Positional parameters are used by shell scripts to get
arguments from the command line

- Each word (or “"token”) on the command line is assigned
to a positional parameter

- The first word is the pathname of the script and is
assigned to positional parameter 6

- Each succeeding word on the command line is assigned
to the next integer ...

Positional and Special Parameters

. Positional numbers :

$ cat print positionals.sh

#!/bin/bash echo 2: $2
echo 3: $3
Prints the wvalue of the
first four positional $./print positionals.sh foo
arguments bar bletch
0: ./print positionals.sh
echo 1l: foo
2: bar
echo 0: $0 3: bletch

echo 1: $1

Positional and Special Parameters

- Positional parameters are the usual way input is given
to a script

- If you need the value of argument number 70 or higher
you have to enclose the number in curly braces:

echo ${10} ${11} ${12} # print the value of
arguments 10, 11 & 12

within a script

Positional and Special Parameters

- Another special
parameter is #

- # contains the number

of arguments passed fo a

program from the
command line

- Notice that # counts
the arguments to the
script — not the name of
the script itself

$ cat print arg numbers.sh
#!/bin/bash

#

Prints the number of arguments
sent to this script

echo
echo This script received $#
arguments

$./print arg numbers.sh foo bar
bletch
This script received 3 arguments

Quoting and the Evaluation
of Variables

- Whenever the value of a variable contains spaces or
tabs, you must guofte the string or escape the
whitespace character

- There are three ways to do this:
o Single quotes: ' '

o Double quotes: " "
o Backslash: \

Quoting and the Evaluation
of Variables

- Single quotes are the most
restrictive

- Everything surrounded by
single quotes appears in the
variable exact/y as you typed it

- This means that special
meaning of characters

like § before a variable name
are ignored

S team='Red Sox'

echo $team
Red Sox

S cheer='Go $team'

S echo Scheer
Go Steam

Quoting and the Evaluation
of Variables

- Double quotes also preserve spaces and tabs Iin the
strings they contain

- But, you can use a $ in front of a variable name to get
the value of a variable inside double quotes:

S cheer="Go Steam"

S echo Scheer

Go Red Sox

Quoting and the Evaluation
of Variables

S foo=bar
- Quotes affect everything $ echo $foo
they enclose bar

- The backslash \ only

effects the character
immedjately tollowing it $ echo $f0o03

Sfoo

S foo3=\S$foo

Removing a Variable's Value

- There are two ways of removing
the value of a variable

- You can use the unset command

- Notice that the variable name was
not preceded by a $

- That's because we are dealing with
the variable itself, not its value.

S echo S$foo
FOO

S unset foo

S echo Sfoo

$

Removing a Variable's Value

- The other way of ¥ echo $foo

. . FOO
removing a variable's
value is to set the value S foo=
of the variable to the
empty string s $ echo $foo

S

Variable Attributes

- Variables can have attributes such as being read-
only or global

- We have already seen one way to set the attribute
of a variable

- If you precede the name of a variable with export ,

It makes the variable global
S export foo=FOO

Variable Attributes

- You can make a variable read only by using
the readonly command:

S echo Sfoo
FOO

S readonly foo

S foo=bar
-bash: foo: readonly variable

Variable Attributes

- You must set the value of a variable before you make
it read-only. Once you make a variable read-only, it

cannot be changed
There are many more variable attributes

They can be set using one of two commands:
o declare

o typeset

Variable Attributes

. declare and Declares a variable to be an array

typeset have

different names but
do the same thing

and have the same
options ...

Declares a variable to be a
function name

Declares a variable to be an
integer

Makes a variable read only

Makes a variable global

Variable Attributes

- Let's look at some examples...

S foo=bar S echo $foo
bletch

S echo $foo

bar S declare -r foo

S foo=bletch S foo=bling

-bash: foo: readonly
variable

Processes

- A process Is a running program

- Every process has resources that it needs to do its job

- Unix Is a multitasking operating system, so many
processes can run at the same time

- The shell runs in a process like any other command

- Every time you run a program (except a built-in), a new
process Is created

Processes

- Running a built-in command does not create a process
because...

o The built-in is part of the shell

o The shell already has a process

- When a shell script is run your current shell creates a
sub-shell to run the script

- This sub-shell runs in a new process

Process Structure

nere is a structure to the creation of processes

ney are created in a Arerarchicalfashion

- When the machine is started there is only one process.
This process is called init

- init then creates all the other processes needed to
run the machine

o These new processes are child processes of init

o These child processes can create other processes

Process Structure

- This is what happens when the shell creates a sub-shell

o The process that creates the new process is called the
parent process and the processes it creates are called its
child processes

o A new process Is created by calling an operating system
routine

- When a process calls an operating system routine it is
sald to make a system call

Process Structure

- System calls are used by programs to have the operating
system perform some action that only the operating
system can do, like create a file

- When Unix is booted, a single process called init is
started:

o init is a spontaneous process

o It does not need a parent process to create it

o init has PID (Process ID) of 1

Process Structure

- init is the ancestor of every other processes that ever runs
on the machine

- Just as the filesystem has a single directory / at the top of
the filesystem hierarchy, so the init process is at the top of

the process hierarchy

- When a Unix system is run in multiuser mode, init runs
getty Or mingetty

- These programs allow users to login and display the
prompts, which ask for a user name and password

Process Structure

- When the user’s responses control is handed over to
the 1ogin utility, 1ogin checks the password against

the user ID

- If the password is correct, the 1ogin process becomes
the user's shell process

Process Identification

- Each process has a unique Process ID (PID) number
- As long as the process runs, it has the same PID

- After a process terminates, its PID can be assigned to a new
process
- ps ~-f displays a full listing of information about each process

running for the user:
S ps -f
UID PID PPID C STIME TTY TIME CMD
it244gh 26374 26373 0 13:41 pts/5 00:00:00 -bash
it244gh 27891 26374 0 13:57 pts/5 00:00:00 ps -f

Process Identification

» Column meanings:
o UID: The user's Unix username
o PID: The process ID of the process

o PPID: The process ID of the parent process — the
orocess that created this process

o CMD: The commandthat is running in the process

Process Identification

- If I were to run sleep in the background, and then run

ps -f£,Iwould see

S sleep 10 & ps -£f

[1] 27352

UID PID PPID C STIME TTY TIME CMD
ghoffmn 27292 27287 0 15:12 pts/1 00:00:00 -bash
ghoffmn 27352 27292 0 15:13 pts/1 00:00:00 sleep 10
ghoffmn 27353 27292 0 15:13 pts/1 00:00:00 ps -f

- Notice that the parent process of both sleep and ps -f
Is my login shell

Process Identification

- pstree will display a tree of all
currently running processes

- If I run pstreeon it244a, then
[can see the process structure

- Where you see a number
followed by a *, it means there
are multiple versions of that
software running /n different
processes

S pstree

init—

—acpid

—atd
—automount——10* [{automount}]
—5* [bother.sh——sleep]
—cron

—dbus-daemon

—dhclient

—6* [getty]
—master——pickup

—dqmgr
—rpc.idmapd

—rpc.statd

—rpcbind
—rsyslogd——-3* [{rsyslogd}]

—rwhod———rwhod

Process Identification

- You can see this more clearly if you run pstree with the
-p option — which will show each process, along with its

process ID:

S pstree -p

init(1l)—F—acpid(1002)

—atd (1157)
—automount (1177) ———{automount} (1179)
—{automount} (1180)
—{automount} (1183)

S pstree -p
init(l)—F—acpid(1002)
—atd (1157)

—cron (1009)

—automount (1177) —{automount} (1179)

—{automount} (1180)
{automount} (1183)
—{automount} (1186)
—{automount} (1195)
—{automount} (1196)
—{automount} (1197)
—{automount} (1198)
—{automount} (1199)
L_{automount} (1200)

—bother.sh (6166) ——sleep (7363)
—bother.sh (6170) ——sleep (7362)
bother.sh (6173)——sleep(7378)
—bother.sh (10606)——sleep (7364)
—bother.sh (10607)——sleep (7365)

—dbus-daemon (391)
—dhclient (610)
—getty (955)
—getty (958)
—getty (961)
—getty (962)
—getty (964)
—getty (1267)
—master (1118) —F—pickup (6072)
L _gmgr (1123)
—rpc.idmapd (400)
—rpc.statd (778)
—rpcbind (662)
—rsyslogd (387)——{rsyslogd} (394)
—{rsyslogd} (395)

L {rsyslogd} (396)
—rwhod (1144) —rwhod (1146)
—sshd (798) —sshd (6107) —sshd (6196) —bash (6197) —pstree (7379)
—systemd-logind (21591)
—systemd-udevd (21445)

—_upstart-file-br (465) The partin red is my

—upstart-socket- (906) current logging shell, and
upstart-udev-br (21442) - :

_vmtoolsd (1202) its (fh/ld process

L_ypbind (859) ——{ypbind} (860) running pstreet

L_{ypbind]} (864)

» For some reason, the connecting lines in the output of this
command do not appear properly when running an ssh

client on Windows

Executing a Command

- When you run a command from within a shell, the shell
creates a child process using a system call; then 1t s/eeps,
waiting for the child process to finish

o While sleeping, the parent process is inactive

o When the child process finishes, it notifies its parent process
of its success or failure by returning an exit status code ... and
then it dies

o When the parent process receives the exit status code, it
wakes up and it runs again

Executing a Command

- When you run a command in the background, the shell
creates a child process for the job but does not go to sleep

- When running a built-in, the shell does not create a

process because the built-in runs in the same process as
the shell

- By default, variables are /oca/and are not passed to child
processes

- But, global variables are /nherited by all child processes

