
Variables and Processes

• Positional and Special
Parameters

• Quoting and the
Evaluation of Variables

• Removing a Variable's
Value

• Variable Attributes

• Processes

oProcess Structure

oProcess Identification

oExecuting a Command

Positional and Special Parameters

• Positional and special
parameters are variables set
by Unix that change each
time you enter a command

• We have already encountered
the special parameter ?

• It contains the status code
returned by the most recent
command

$ ls bar.txt
bar.txt

$ echo $?
0

$ ls xxx
ls: cannot access xxx: No
such file or directory

$ echo $?
2

Positional and Special Parameters

• Positional parameters are used by shell scripts to get
arguments from the command line

• Each word (or “token”) on the command line is assigned
to a positional parameter

• The first word is the pathname of the script and is
assigned to positional parameter 0

• Each succeeding word on the command line is assigned
to the next integer ...

Positional and Special Parameters

• Positional numbers :

$ cat print_positionals.sh
#!/bin/bash
#
Prints the value of the
first four positional
arguments

echo

echo 0: $0
echo 1: $1
...

...
echo 2: $2
echo 3: $3

$./print_positionals.sh foo
bar bletch
0: ./print_positionals.sh
1: foo
2: bar
3: bletch

Positional and Special Parameters

• Positional parameters are the usual way input is given
to a script

• If you need the value of argument number 10 or higher
you have to enclose the number in curly braces :

echo ${10} ${11} ${12} # print the value of

arguments 10, 11 & 12

within a script

Positional and Special Parameters

• Another special

parameter is #

• # contains the number

of arguments passed to a
program from the
command line

• Notice that # counts

the arguments to the
script – not the name of
the script itself

$ cat print_arg_numbers.sh
#!/bin/bash
#
Prints the number of arguments
sent to this script

echo
echo This script received $#
arguments

$./print_arg_numbers.sh foo bar
bletch

This script received 3 arguments

Quoting and the Evaluation
of Variables

• Whenever the value of a variable contains spaces or
tabs, you must quote the string or escape the
whitespace character

• There are three ways to do this:

o Single quotes: ' '

o Double quotes: " "

o Backslash: \

Quoting and the Evaluation
of Variables

• Single quotes are the most
restrictive

• Everything surrounded by
single quotes appears in the
variable exactly as you typed it

• This means that special
meaning of characters
like $ before a variable name
are ignored

$ team='Red Sox'

echo $team
Red Sox

$ cheer='Go $team'

$ echo $cheer
Go $team

Quoting and the Evaluation
of Variables

• Double quotes also preserve spaces and tabs in the
strings they contain

• But, you can use a $ in front of a variable name to get
the value of a variable inside double quotes:

$ cheer="Go $team"

$ echo $cheer

Go Red Sox

Quoting and the Evaluation
of Variables

• Quotes affect everything
they enclose

• The backslash \ only
effects the character
immediately following it

$ foo=bar

$ echo $foo
bar

$ foo3=\$foo

$ echo $foo3
$foo

Removing a Variable's Value

• There are two ways of removing
the value of a variable

• You can use the unset command

• Notice that the variable name was
not preceded by a $

• That's because we are dealing with
the variable itself, not its value.

$ echo $foo
FOO

$ unset foo

$ echo $foo

$

Removing a Variable's Value

• The other way of
removing a variable's
value is to set the value
of the variable to the
empty string :

$ echo $foo
FOO

$ foo=

$ echo $foo

$

Variable Attributes

• Variables can have attributes such as being read-
only or global

• We have already seen one way to set the attribute
of a variable

• If you precede the name of a variable with export ,

it makes the variable global
$ export foo=FOO

Variable Attributes

• You can make a variable read only by using
the readonly command:
$ echo $foo
FOO

$ readonly foo

$ foo=bar
-bash: foo: readonly variable

Variable Attributes

• You must set the value of a variable before you make
it read-only. Once you make a variable read-only, it
cannot be changed

• There are many more variable attributes

• They can be set using one of two commands:

o declare

o typeset

Variable Attributes

• declare and

typeset have

different names but
do the same thing
and have the same
options ...

Option Meaning

a Declares a variable to be an array

f
Declares a variable to be a

function name

i
Declares a variable to be an

integer

r Makes a variable read only

x Makes a variable global

Variable Attributes

• Let's look at some examples...

$ foo=bar

$ echo $foo
bar

$ foo=bletch
...

...
$ echo $foo
bletch

$ declare -r foo

$ foo=bling
-bash: foo: readonly
variable

Processes

• A process is a running program

• Every process has resources that it needs to do its job

• Unix is a multitasking operating system, so many
processes can run at the same time

• The shell runs in a process like any other command

• Every time you run a program (except a built-in), a new
process is created

Processes

• Running a built-in command does not create a process
because...

o The built-in is part of the shell

o The shell already has a process

• When a shell script is run your current shell creates a
sub-shell to run the script

• This sub-shell runs in a new process

Process Structure

• There is a structure to the creation of processes

• They are created in a hierarchical fashion

• When the machine is started there is only one process.
This process is called init

• init then creates all the other processes needed to

run the machine

o These new processes are child processes of init

o These child processes can create other processes

Process Structure

• This is what happens when the shell creates a sub-shell

o The process that creates the new process is called the
parent process and the processes it creates are called its
child processes

o A new process is created by calling an operating system
routine

• When a process calls an operating system routine it is
said to make a system call

Process Structure

• System calls are used by programs to have the operating
system perform some action that only the operating
system can do, like create a file

• When Unix is booted, a single process called init is

started:

o init is a spontaneous process

o It does not need a parent process to create it

o init has PID (Process ID) of 1

Process Structure

• init is the ancestor of every other processes that ever runs

on the machine

• Just as the filesystem has a single directory / at the top of
the filesystem hierarchy, so the init process is at the top of

the process hierarchy

• When a Unix system is run in multiuser mode, init runs
getty or mingetty

• These programs allow users to login and display the
prompts, which ask for a user name and password

Process Structure

• When the user’s responses control is handed over to
the login utility, login checks the password against

the user ID

• If the password is correct, the login process becomes

the user's shell process

Process Identification

• Each process has a unique Process ID (PID) number

• As long as the process runs, it has the same PID

• After a process terminates, its PID can be assigned to a new
process

• ps -f displays a full listing of information about each process

running for the user:
$ ps -f
UID PID PPID C STIME TTY TIME CMD
it244gh 26374 26373 0 13:41 pts/5 00:00:00 -bash
it244gh 27891 26374 0 13:57 pts/5 00:00:00 ps -f

Process Identification

• Column meanings:

o UID: The user's Unix username

o PID: The process ID of the process

o PPID: The process ID of the parent process – the

process that created this process

o CMD: The command that is running in the process

Process Identification

• If I were to run sleep in the background, and then run
ps -f , I would see
$ sleep 10 & ps -f
[1] 27352
UID PID PPID C STIME TTY TIME CMD
ghoffmn 27292 27287 0 15:12 pts/1 00:00:00 -bash
ghoffmn 27352 27292 0 15:13 pts/1 00:00:00 sleep 10
ghoffmn 27353 27292 0 15:13 pts/1 00:00:00 ps -f

• Notice that the parent process of both sleep and ps –f
is my login shell

Process Identification

• pstree will display a tree of all

currently running processes

• If I run pstree on it244a , then

I can see the process structure

• Where you see a number
followed by a * , it means there
are multiple versions of that
software running in different
processes

$ pstree
init─┬─acpid

├─atd
├─automount───10*[{automount}]
├─5*[bother.sh───sleep]
├─cron
├─dbus-daemon
├─dhclient
├─6*[getty]
├─master─┬─pickup
│ └─qmgr
├─rpc.idmapd
├─rpc.statd
├─rpcbind
├─rsyslogd───3*[{rsyslogd}]
├─rwhod───rwhod
...

Process Identification

• You can see this more clearly if you run pstree with the
-p option – which will show each process, along with its

process ID:

$ pstree -p

init(1)─┬─acpid(1002)
├─atd(1157)
├─automount(1177)─┬─{automount}(1179)
│ ├─{automount}(1180)
│ ├─{automount}(1183)
...

$ pstree -p
init(1)─┬─acpid(1002)

├─atd(1157)
├─automount(1177)─┬─{automount}(1179)
│ ├─{automount}(1180)
│ ├─{automount}(1183)
│ ├─{automount}(1186)
│ ├─{automount}(1195)
│ ├─{automount}(1196)
│ ├─{automount}(1197)
│ ├─{automount}(1198)
│ ├─{automount}(1199)
│ └─{automount}(1200)
├─bother.sh(6166)───sleep(7363)
├─bother.sh(6170)───sleep(7362)
├─bother.sh(6173)───sleep(7378)
├─bother.sh(10606)───sleep(7364)
├─bother.sh(10607)───sleep(7365)
├─cron(1009)
. . .

. . .
├─dbus-daemon(391)
├─dhclient(610)
├─getty(955)
├─getty(958)
├─getty(961)
├─getty(962)
├─getty(964)
├─getty(1267)
├─master(1118)─┬─pickup(6072)
│ └─qmgr(1123)
├─rpc.idmapd(400)
├─rpc.statd(778)
├─rpcbind(662)
├─rsyslogd(387)─┬─{rsyslogd}(394)
│ ├─{rsyslogd}(395)
. . .

. . .
│ └─{rsyslogd}(396)
├─rwhod(1144)──rwhod(1146)
├─sshd(798)──sshd(6107)──sshd(6196)──bash(6197)──pstree(7379)
├─systemd-logind(21591)
├─systemd-udevd(21445)
├─upstart-file-br(465)
├─upstart-socket-(906)
├─upstart-udev-br(21442)
├─vmtoolsd(1202)
└─ypbind(859)─┬─{ypbind}(860)

└─{ypbind}(864)
• For some reason, the connecting lines in the output of this

command do not appear properly when running an ssh

client on Windows

The part in red is my

current logging shell, and

its child process

running pstreet

Executing a Command

• When you run a command from within a shell, the shell
creates a child process using a system call; then it sleeps,
waiting for the child process to finish

o While sleeping, the parent process is inactive

o When the child process finishes, it notifies its parent process
of its success or failure by returning an exit status code ... and
then it dies

o When the parent process receives the exit status code, it
wakes up and it runs again

Executing a Command

• When you run a command in the background, the shell
creates a child process for the job but does not go to sleep

• When running a built-in, the shell does not create a
process because the built-in runs in the same process as
the shell

• By default, variables are local and are not passed to child
processes

• But, global variables are inherited by all child processes

