
Advanced Shell Usage III.B

• The Readline Library

o Readline Completion

o Pathname Completion

o Command Completion

o Variable Completion

• Aliases

o Single Quotes Versus Double Quotes in Aliases

o Examples of Aliases

• Functions

• Where to Define Variables, Aliases and Functions

The Readline Library

• The Readline library is a collection of procedures,
written in the C programming language, that let you
edit the command line

• The Readline library was created by the GNU project

• When you use Control key combinations on the
command line, you are using the Readline library

• Any program running under Bash and written in C can
use the Readline library

The Readline Library

• There are two modes available in the Readline library

o emacs mode

o vim mode

• it244a is configured to use emacs mode by default

• That is the mode we have been using

• Here are some of the more useful commands for the
emacs version of the Readline library...

Readline Completion: Commands

Command Meaning

Control A Move to the beginning of the line

Control E Move to the end of the line

Control U Remove everything from the text entry point to the beginning of the line

Control K Remove everything from the text entry point to the end of the line

← Move the text entry point one character to the left

→ Move the text entry point one character to the right

↑ Recall the previous command line entry in the history list

↓ Recall the following command line entry in the history list

Readline Completion

• The Readline library provides a completion mechanism

• Type a few letters and hit Tab , and Readline completion

will try to supply the rest

• There are three forms of completion provided by the
Readline library:

o Pathname completion

o Command completion

o Variable completion

• They all use Tab to complete something, but they differ

in what they complete

Pathname Completion

• Pathname completion is where you start to type
a pathname and then hit Tab to have the Readline fill

in the rest

• If you type the first few characters of a pathname and
then hit Tab , then the Readline library will try to supply

the rest

• If there is only one pathname that matches, then the
Readline library will provide the rest of the pathname

Pathname Completion

• If there is more than one possible completion, then you will
hear a beep

• You can then enter more characters before hitting Tab
again, or you can hit Tab right after the first beep, and the

Readline library will give you a list of possible completions

$ ls hw[Tab][Tab]
hw2/ hw4/ hw5/ hw6/

• If the second Tab still gives you a beep, then there are no

possible completions

Command Completion

• The Readline library will complete the name of a
command for you

• Begin typing a command, and then hit Tab

• If there is more than one possible completion, you will
hear a beep

• If you hit Tab a second time, you will see a list of
possible completions...

Command Completion

$ e[Tab][Tab]
e2freefrag elfedit esac
e2fsck elif etags
e2image else etags.emacs23
e2label emacs ethtool
e2undo emacs23 eval
e4defrag emacs23-x ex
ebrowse emacsclient exec
ebrowse.emacs23 emacsclient.emacs23 exit
echo enable expand
ed enc2xs expiry
edit env export
editor envsubst expr
editres eqn extcheck
egrep erb
eject erb1.8

Variable Completion

• When you type a dollar sign $ followed immediately
by some text, you are entering a variable name

• The Readline library knows this and will attempt to
complete the name of the variable
$ bar=BLETCH

$ echo $b[Tab]ar
BLETCH

• If there is more than one possibility, you will hear a beep

Variable Completion

• If you then hit Tab another time, you will see a list of

possible completions

$ foo1=FOO; foo2=BAR

$ echo $foo[Tab][Tab]

$foo1 $foo2

• If no list appears after the second Tab , then there are

no possible variable name completions

Aliases

• An alias is a string that the shell replaces with some
other string when you use it on the command line

• Usually, the value assigned to the alias is a command or
a part of a command

• You may want to get a long listing for a directory, and
typing ls -l is quite a few characters

• So, you can define an alias: ll

alias ll='ls -l'

Aliases

• Then, if you want a long listing, you can simply type ll
instead of ls -l
$ ll
total 45
-rwxr-xr-x 1 ghoffmn grad 38 Oct 11 20:05 border.sh
-rwxr-xr-x 1 ghoffmn grad 135 Oct 16 08:35 bother.sh
-rwxr-xr-x 1 ghoffmn grad 13 Oct 29 14:23 cheer.sh
-rwxr-xr-x 1 ghoffmn grad 103 Oct 9 08:53

command_name.sh
-rwxr-xr-x 1 ghoffmn grad 99 Oct 29 16:15

comment_test.sh
...

Aliases

• To define an alias, you use the alias command

• alias uses the following format in Bash

alias ALIAS_NAME=ALIAS_VALUE

• There must be no spaces on either side of the equal
sign = when defining an alias in Bash

• If the string assigned to the alias has spaces, then it
must be quoted

alias la='ls -a'

Aliases

• If you run alias with no arguments, then it will list all

aliases currently defined:
$ alias
alias bin='pu $bin'
alias binl='ls $bin'
alias ck755='ls -l *.sh | tr '\''-'\'' '\'' '\'' |
grep '\''rwxr xr x'\'''
alias ckhb='head -1 *.sh | grep /bin/bash'
alias cl='pu $cl'
alias clhws='pu $clhws'
alias clhwsl='ls $clhws'
alias cll='ls $cl'
alias clr='clear'
...

Aliases

• If you follow alias with the name of an alias, then it

will display the definition
$ alias ll
alias ll='ls -l'

• In Bash, an alias cannot accept an argument, but it can
in the TC shell

• Although an alias cannot accept an argument in Bash,
an argument can follow it

• This is a subtle point...

Aliases

• You could use the ll alias and follow it with the name of a

directory

• So, if you were to type the following at the command line...

ll /home/ghoffmn

• ...then the shell would substitute "ls -l" for ll , and the

shell would then execute the changed command line

ls -l /home/ghoffmn

• But, what if I wanted to create an alias for a pipe using two
commands, and I needed to pass an argument to the first
command?

Aliases

• For example, if I wanted to create an alias for something
like this

ls -l DIRECTORY_NAME | head

• In Bash, I cannot create an alias like this...

alias llh='ls -l $1 | grep txt'

because an alias will not accept an argument

• When Bash comes across an alias, it substitutes
the value of the alias for the name of the alias

Aliases

• So, you can't give an argument to an alias in Bash –
unless the argument comes after the alias

• Instead of allowing aliases to accept arguments, Bash
has functions

o Functions in bash can consist of many commands, and you

can use arguments with each of these commands

o We'll discuss functions a little later in this class

• The TC shell has no functions

Aliases

• You can't use the name of an alias inside the value of an
alias

• In other words, an alias cannot call itself

• If you defined an alias, and then used the name of the
alias in the value of the alias, how would Bash know
when to stop?

• In other words, if you tried to do something like this...
alias foo='foo foo foo'

Aliases

• ...the alias would try to call
itself, and that call to the
alias would try to call
itself, and you would have
an infinite recursive loop

• To keep this from
happening, an alias will
not work if it calls itself...

$ alias foo='echo foo'

$ foo
foo

$ alias foo='foo foo foo'

$ foo
foo: command not found

Aliases

• Aliases are not global. They
only work in the shell in
which they are defined
$alias ll='ls -l'

$ bash

$ ll
ll: command not found

• The alias command is a

built-in

$ type alias
alias is a shell
builtin

• This makes sense since an
alias only works in the shell
in which it is defined

• If alias were not a built-in,

it would be defined in the
subshell that ran the alias

command, not your current
shell.

Single Quotes Versus Double
Quotes in Aliases

• There are two types of quotes in bash

o Single quotes - ' '

o Double quotes - " "

• Both single and double quotes allow you to assign a
variable a value that contains whitespace
$ name='Glenn Hoffman'

$ echo $name
Glenn Hoffman

Single Quotes Versus Double
Quotes in Aliases

• The whitespace characters are:

o Spaces

o Tabs

o Newlines (carriage returns)

• Single quotes turn off all special meanings of characters
$ echo 'My name is $name'
My name is $name

• Variables are not evaluated when they are enclosed in
single quotes

Single Quotes Versus Double
Quotes in Aliases

• But, double quotes allow you to use the $ in front of a
variable, to get the value of the variable:
$ echo "My name is $name"
My name is Glenn Hoffman

• Usually, when defining aliases, you want to use single quotes

• If you use single quotes when defining an alias, any variables
in the alias value will be evaluated when you use the alias,
which is usually what you want

Single Quotes Versus Double
Quotes in Aliases

• If you use double quotes when defining an alias, then any
variable in the alias will be evaluated when it is defined, not
when it is used

• Consider the following: The PWD keyword variable is used

by the shell to keep track of your current directory
$ pwd
/home/it244gh

$ echo $PWD
/home/it244gh

Single Quotes Versus Double
Quotes in Aliases

• This means that the value
of PWD changes as you move

about the filesystem

• Let's see what happens if we
define an alias using PWD

inside double quotes
$ alias where="echo My
current location is
$PWD "
...

...
$ where
My current location is
/home/it244gh

$ cd /

$ pwd
/

$ where
My current location is
/home/it244gh

Single Quotes Versus Double
Quotes in Aliases

• The value of PWD was evaluated when the alias was defined

• If I now move to another directory, the value of PWD will be

changed, but that will not affect the alias.

o The alias got the value of PWD, at the time, when it was defined.

o Therefore, the current value of PWD is irrelevant in terms of how

the alias words.

• To define this alias correctly, we must use single quotes
$ alias where='echo My current location is $PWD '

Single Quotes Versus Double
Quotes in Aliases

• Now, PWD will be evaluated

when the alias is used
$ pwd
/home/it244gh

$ alias where= 'echo My
current location is
$PWD'

$ where
...

...
My current location is
/home/it244gh

$ cd /

$ pwd
/

$ where
My current location is
/

Single Quotes Versus Double
Quotes in Aliases

• Here, we get the current value of PWD , at the time the

alias is run

• When the shell comes across an alias, it simply
substitutes the value of the alias for the name of the
alias

Examples of Aliases

• I have defined a number of aliases to make my work
easier

• One alias makes it easier for me to list the "invisible
files" in a directory
$ alias la='ls -a'

$ la
. .addressbook .bash_profile .cshrc .login .pinerc
.. .bash_history .cache it244 .msgsrc .ssh

Examples of Aliases

• Another alias makes it easier to see the most recently
created files and directories
$ alias ltr
alias ltr='ls -ltr'

$ ltr ~/bin/shell
total 4
-rwxr-xr-x 1 ghoffmn grad 107 Oct 13 09:42 border.sh
-rwxr-xr-x 1 ghoffmn grad 339 Oct 13 09:42 hw_setup.sh
-rwxr-xr-x 1 ghoffmn grad 306 Oct 14 00:18 hw_copy.sh
-rwxr-xr-x 1 ghoffmn grad 156 Nov 5 17:09 step.sh

Examples of Aliases

• That alias, ltr , sorts the

directory listing, with the
most recent entries at
the bottom

• This make is easier to see
the most recently
modified files

• A user may create
aliases, using a variable,
to go to directories they
visit often

$ lnwb=/home/ghoffmn/public_html/it244

$ alias lnwb='cd $lnwb'

$ pwd
/home/ghoffmn/bin

$ lnwb

$ pwd
/home/ghoffmn/public_html/it244

Examples of Aliases

• You can follow a standard procedure when defining
such aliases

o First, create a variable holding the absolute address of the
directory

o Next, create an alias to go to that directory, and let the name
of the alias be the same as the variable

• There is no possibility of confusion since you must put
a $ in front of a variable to get its value, but you don't
do this with an alias

Functions

• A function is a collection of shell commands that is
given a name

• Functions can accept arguments from the command line
using positional parameters

• A function can be run anywhere in the filesystem, since
it has no pathname

• You simply type the name of the function to run it

Functions

• Functions differ from shell scripts in a number of ways

o They are stored in memory (RAM), rather than in a file on
disk

o The shell preprocesses the function so it can execute more
quickly

o The shell executes the function in its own process

• For these reasons, functions run much faster than shell
scripts

Functions

• Functions should be used sparingly because they take
up memory

o All the functions you define are loaded into the memory of
your shell process

o If you define too many functions, it will hurt the performance
of the shell

• Functions are local to the shell in which they are
defined, so they do not work in sub-shells

Functions

• Functions definitions have the following form
FUNCTION_NAME ()
{

COMMAND
COMMAND
...

}

• Where COMMAND is anything you can enter at the

command line.

Functions

• Example:
$ whoson ()
> {
> date
> finger | grep 'pts/'$1
> }

$ whoson 14
Sun Nov 10 20:18:33 EST 2013
thamerfa Thamer AlTuwaiyan pts/14 2 Nov

10 18:44 (c-174-63-86-44.hsd1.ma.comcast.net)

Functions

• Once you type the final } , the definition is complete,
and you get a command prompt back

• You can define a function on a single command line
$ echo3 () { echo $1; echo $1; echo $1;}

$ echo3 foo
foo
foo
foo

Functions

• But, you must use a semi-colon after each command.
Including the last command

• For clarity, you can precede the function name with
the keyword function

$ function cheer ()
> {
> echo Go $1'!'
> }

$ cheer 'Red Sox'
Go Red Sox!

Functions

• function is not a command
$ type function
function is a shell

keyword

• So it is optional when
defining a function

• You can pass command line
arguments to a function
using the positional
parameters

$ print_args ()
> {
> echo "arg1: $1"
> echo "arg2: $2"
> }

$ print_args foo bar
arg1: foo
arg2: bar

$ type pu
pu is a function
pu ()
{

echo;
pushd $1 > /dev/null;
ls --color=auto

}

$ pwd
/home/it244gh

$ pu ~ghoffmn

assignments_submitted it114 mail public_html vp
bin it244 Mail scans
course_files it341 News test
html it441 nsmail test_taken

$ pwd
/home/ghoffmn

• To see a function's definition,
you can use the type

command

• Consider the function pu

(defined by Prof. Hoffman),
which can be used in place
of cd

Functions

• The function pu first prints a blank line, which makes

things easier to read; then, it calls pushd

• But, pushd prints the directory stack, which can be

distracting, so the function sends this output
to /dev/null

• Next, run ls to see the contents of the new directory

• pu is a good function name because it is shorter than

"push"

Functions

• With pu , the directory stack remembers the last directory

• To return to this directory, there is po (also by Prof.

Hoffman), which is short for "pop"

• But, po does not require an argument, so it can be an alias
$ alias po
alias po='popd > /dev/null; echo; ls'

• po uses popd to return to the previous directory, redirecting
the printing of the directory stack to /dev/null

Functions

• Then, it prints a blank line
and prints the contents of
the directory

• Another example: Perhaps
you would like to be able to
both create and change to a
new directory, at once.

• Here is a function, called
godir , that will do this...

$ function godir ()
> {
>
> mkdir $1
> cd $1
>
> }

$ pwd
/home/ckelly

$ godir new_test_dir

$ pwd
/home/ckelly/new_test_dir

Functions

• To remove a function, use the unset command
$ cheer 'Red Sox'
Go Red Sox!

$ unset cheer

$ cheer
cheer: command not found

• Functions, like aliases, only work in the shell in which
they are defined

Where to Define Variables,
Aliases, and Functions

• Global variables are visible in all sub-shells

• Global variables should be defined in .bash_profile in

your home directory

• That will make them available when you login, since the
commands in .bash_profile are run after your

password is accepted

• Aliases and functions cannot be made global, which means
that if you define them in .bash_profile , they will not
be available in interactive sub-shells.

Where to Define Variables,
Aliases, and Functions

• But, since few people use interactive sub-shells, they should
probably be put in .bash_profile , just to keep things

simple.

• If you need your aliases and functions in interactive sub-
shells, then you should define them instead in .bashrc and
then add the following in your .bash_profile
source .bashrc

....or they won't be defined in your login shell

