
Command Line Time-Savers

• Bash Features and Options

• Processing the Command Line

• History Expansion

• Alias Substitution

• Brace Expansion

• Tilde ~ Expansion

• Parameter and Variable
Expansion

• Arithmetic Expansion

• Command Substitution

• Word Splitting

• Pathname Expansion

• Process Substitution

Bash Features and Options

• There are a number of shell features that you can turn
on and off

• One example is the noclobber option

• When this option is set, you cannot overwrite the
contents of a file with redirected output

• To set a feature, use set -o followed by a space and

the feature name
$ set -o noclobber

Bash Features and Options

• If I now try to redirect output to a file, the shell will
prevent this
$ echo "Go Red Sox" > output.txt
bash: output.txt: cannot overwrite existing
file

• To unset a feature use set +o followed by a space and

the feature name
$ set +o noclobber

Bash Features and Options

• I can now overwrite a file with redirection
$ cat output.txt
foo

$ echo "Go Red Sox" > output.txt

$ cat output.txt
Go Red Sox

• You can find a list of shell features and options in Sobell

• Shell features and options will not be on the final

Processing the Command Line

• The shell can modify what you enter at the command
line

• It does this to provide features like aliases

• To do this properly, the shell must modify the command
line in a specific order

• Otherwise, things could become terribly confused

• There are 10 different ways in which the shell can
modify the command line

Processing the Command Line

• The order in which the shell performs them is as follows:

1. History Expansion

2. Alias Substitution

3. Brace Expansion

4. Tilde ~ Expansion

5. Parameter and Variable
Expansion

6. Arithmetic expansion

7. Command substitution

8. Word splitting

9. Pathname expansion

10. Process substitution

History Expansion

• The first substitution Bash performs is history expansion

• History expansion occurs when you use the exclamation
mark ! in front of an event ID to recall a previous command
from the history list
$ history 5

540 cat output.txt
541 echo "Go Red Sox" > output.txt
542 cat output.txt
543 echo foo
544 history 5

$!543
echo foo
foo

Alias Substitution

• After history expansion, Bash performs alias
substitution
$ alias ll='ls -l'

$ ll
total 2
lrwxrwxrwx 1 it244gh man 34 Sep 6 21:09 it244 ->

/courses/it244/f12/ghoffmn/it244gh
drwxr-xr-x 2 it244gh ugrad 512 Oct 27 09:16 work

• The shell evaluates an alias by substituting the value of
an alias for the name of the alias

Brace Expansion

• After alias substitution, Bash performs brace expansion

• Braces { } allow you to write several strings in one
operation

• The braces contain strings of characters, separated
by commas

• The shell expands a brace by creating multiple strings –
one for each string contained in the braces

Brace Expansion

• If I wanted to create "foo" files numbered 1 to 5, I could
use braces expansion as follows
$ touch foo{1,2,3,4,5}.txt

$ ls
foo1.txt foo2.txt foo3.txt foo4.txt foo5.txt

• The shell expanded the braces to create as many files as
there were strings inside the braces

o The shell takes the string that appears before the braces

o Sticks it in front of every string inside the braces

o Followed by the text the follows the braces

Brace Expansion

• This creates many new strings on the command line

• The strings inside the braces can contain one or more
characters, but each string must be separated from the
others by a comma
$ touch {a,ab,abc}.txt

$ ls
abc.txt ab.txt a.txt

Brace Expansion

• There should not be any unquoted spaces or tabs within
the braces!

• If there is, the expansion will not work properly
$ touch {b , bc, b c d}.txt

$ ls -l
total 0
-rw-r--r-- 1 it244gh ugrad 0 Nov 14 10:37 ,
-rw-r--r-- 1 it244gh ugrad 0 Nov 14 10:37 b
-rw-r--r-- 1 it244gh ugrad 0 Nov 14 10:37 {b
-rw-r--r-- 1 it244gh ugrad 0 Nov 14 10:37 bc,
-rw-r--r-- 1 it244gh ugrad 0 Nov 14 10:37 c
-rw-r--r-- 1 it244gh ugrad 0 Nov 14 10:37 d}.txt

Tilde Expansion

• After brace expansion, Bash performs tilde expansion

• Whenever Bash sees a tilde ~ by itself, it substitutes
the absolute address of your home directory
$ echo ~
/home/it244gh

• Whenever Bash sees a ~ followed by a Unix username,
it substitutes the absolute address of the home
directory of that account
$ echo ~ghoffmn
/home/ghoffmn

Tilde Expansion

• If there is no username matching the string following
the ~ , then no expansion is performed
$ echo ~xxx
~xxx

• There are two other tilde expansions

~+ ~-

Tilde Expansion

• When Bash sees ~+ , it
substitutes the value of
the current directory

$ pwd
/home/it244gh/work

$ echo ~+
/home/it244gh/work

• When Bash sees ~- , it
substitutes the value of
the previous directory
$ pwd
/home/it244gh/work

$ cd

$ pwd
/home/it244gh

$ echo ~-
/home/it244gh/work

Parameter and Variable
Expansion

• After tilde expansion, Bash performs parameter and variable
expansion

$ echo $SHELL
/bin/bash

$ echo $?
0

• Notice that this expansion comes after alias expansion, so
you can use variables and parameters when defining aliases

Arithmetic Expansion

• After parameter and variable expansion, Bash
performs arithmetic expansion

• Unix treats everything on the command line as text
unless told otherwise
$ echo 5 + 4
5 + 4

• Arithmetic expansion allows Bash to

o Interpret characters as numbers and to

o Perform ordinary arithmetic upon them

Arithmetic Expansion

• But, it does more than that

• Whenever bash sees the $((, it treats everything that
follows as a number or an arithmetic operator, until it
sees))
$ echo $((5 + 4))
9

• It then evaluates the arithmetic expression inside the
double parentheses and substitutes the resulting
numeric value for the entire $((...)) expression

Arithmetic Expansion

• The rules for evaluating arithmetic expressions are the same
as for the C programming language

• They are mostly what you would expect

• You can use variables within an arithmetic expression
$ a=5

$ b=3

$ echo $a $b
5 3

$ echo $(($a - $b))
2

Arithmetic Expansion

• Inside the arithmetic expression itself, you do not have
to use a $ to get the value of a variable
$ echo $a $b
5 3

$ echo $((a * b))
15

Command Substitution

• After arithmetic expansion, Bash performs command
substitution

• Command substitution uses the following format
$(COMMANDS)

• Where COMMANDS are any valid Unix commands

• The commands inside the () are run in a subshell and
the entire command substitution expression $() —
along with whatever is inside it— is replaced by the
output of the commands

Command Substitution

• For example, if I wanted to set a variable to the current
time and date, I could use
$ today=$(date)

$ echo $today
Tue Oct 25 17:00:07 EDT 2011

• There is an alternate format for command substitution

• You can place the command within back tics ` ... `
$ ls -l `which bash`
-rwxr-xr-x 1 root root 954896 2011-03-31 17:20 /bin/bash

Command Substitution

• Before running ls, Bash first runs the command
which bash

• And replaces the command with the value returned by
which

• ls can now take /bin/bash as its argument

• Command substitution can be used inside double quotes
$ echo "Today is $(date +'%A, %B %d, %Y')"
Today is Wednesday, November 13, 2013

Command Substitution

• The back tic is the character you get by holding down the
Shift key and pressing the same key you use for ~

• The back tics do not work in the TC shell and is easily
mistaken for the single quote ' , so I will not use it in

this course

Word Splitting

• After command substitution, Bash performs word splitting

• When Bash gets a command line, it splits the text into tokens

• Tokens are strings of characters, usually separated by
whitespace

o Spaces

o Tabs

o Newlines (carriage returns)

• But, there are some situations where you want another
character to separate tokens

Word Splitting

• You can do this using the Unix keyword variable IFS

• IFS stands for Internal Field Separator

• If you give IFS a value – such as the colon : — then it

will be use to separate tokens

o With the read command

o With the set command

o In command substitution

o In variable substitution

• Word splitting will not be on the final

Pathname Expansion

• After word splitting, Bash performs pathname expansion ,
also known as globbing

• Pathname expansion is where you use meta-characters to
specify one or more pathnames

• The metacharacters are used to create patterns that are
called ambiguous file references

• The metacharacters are

? * []

Pathname Expansion

• Here are some examples
$ ls t*
test1.txt test2.txt test3.txt

$ echo t*
test1.txt test2.txt test3.txt

Process Substitution

• After pathname expansion, Bash performs process
substitution

o Process substitution allows you to create a file on the fly

o A command is run in a sub-shell, and the lines generated by
that command are treated as a “file” which can be used by
other Unix/Linux commands

• Process substitution uses the following format
<(COMMAND)

Process Substitution

• The output of the command that appears between the
parentheses is placed in a Unix structure called a named pipe

• Normal Unix pipes connect the output of one command to
the input of another command
o Each command runs inside its own process, so a pipe allows one process

to talk to another

o This is called interprocess communications

o Normal Unix pipes are also known as anonymous pipes because they
have no name

o Anonymous pipes only last as long as it takes for the first command to
talk to the second command

Process Substitution

• Named pipes can last longer than anonymous pipes

• They can actually be created and removed at the
command line

• When Unix performs process substitution...

o It creates a process to run a command

o And sends the output of that command to a named pipe

• Then, Unix redirects input to come from the named pipe

Process Substitution

• We can use named pipes to compare two directories:
$ diff -y <(ls -1 tia777/ce) <(ls -1 jgreen/ce)
ce1 ce1
ce10 ce10
ce11 <
ce2 ce2
ce3 ce3
ce4 ce4
ce5 ce5
ce6 ce6
ce7 ce7
ce8 ce8
ce9 ce9

• Process substitution will not be on the final

• Here we have two ls

commands, each running in
their own subshell and each
one sending output to its
own named pipe

• We can then run diff to

look for differences in these
two "files"

