Scripting Control Structures 1

- Shell Scripts

- Shell Script Control Structures
- The if ... then Construct

- test
- The test operators
- Using test in scripts

- Checking the Arguments to a Script

Shell Scripts

- Most of the rest of this course will deal with shell scripts

- Shell scripts are a series of Unix commands placed in a
file

o You can run a shell script like any other program

o Shell scripts allow you to automate certain routine operations

o Much of the work in Unix system administration is done
using shell scripts

- Shell script programming is not like other kinds of
programming

Shell Scripts

- Some differences...

o Unix commands are not uniform in the way they work because each
was developed separately by different people

o The control structures used in shell scripts are different from those
In programming languages

» Some will advise you to only write shell scripts for simpl/e tasks

o If you need /7 statements or Joops to write a script, then you may
prefer to use another scripting language, like Perl or Python

o Regardless, you should know how to read shell scripts

Shell Scripts

- When you run a shell script, your current shell creates a
sub-shellto run the script

- You must have both read and execute permissions to run
a script without using the bash command

Shell Script Control Structures

- Control structures allow commands in a script to be
executed in a different order

- Without control structures, a shell script could only

o start at the beginning...
o ...and go to the end once

which would limit what it could do

- There are two basic types of control structures
o Conditionals (Branching)
o Loops (Repetition)

Shell Script Control Structures

- Conditionals are statements where different things happen...
o based on some condition
o which is either true or false

. if statements are the conditional statements that you see
most often

- Loops are constructs that repeat a number of statements
until some condition is reached

- Shell scripts can have both conditionals and loops

The 1f ... then Construct

- The most basic conditional isthe if ... then

construction, which has the format

if COMMAND

then
COMMAND 1
COMMAND 2

£i
o where COMMAND is any Unix command that returns an exit
status

o and COMMAND 1, COMMAND 2, .., are a series of Unix
commands

The 1f ... then Construct

» The most commonly used command following if
IS test

. It is used to test the truth of some condition

- Let's look at an example...

$ cat if 1.sh
#! /bin/bash
##

a shell script that demonstrates the Unix if
construct

if 1.sh

echo -n "word 1: "
read wordl
echo -n "word 2: "
read word2

if test "Swordl" = "Sword2"
then

echo The two words match
fi
echo End of script

S ./if_l.sh
word 1: foo

word 2: foo
The two words match
End of script

S ./if_l.sh
word 1: foo
word 2: bar
End of script

The 1f ... then Construct

. read Is a utility that

o takes input from standard input...

O LN)

and stores that value in the variable given to it as an

argument

- Notice that echo was used with the -n option

ol
C

ol

ne -n option prevents echo from sending a newline
naracter — which would move down to the next line

nis allows echo print a prompt for input that will be read

by read

The 1f ... then Construct

. If the condition is true, then the statements that lie between
the then and £i keywords are run

-+ then must either be
o On a separate line from if

o or on the same line, but separated by a semi-colon

- Example:

$ cat if 2.sh
#! /bin/bash
##

a shell script that demonstrates the Unix if construct

""" if 2.sh

echo -n "word 1: "
read wordl
echo -n "word 2: "
read word2

if test "S$wordl" = "$word2" ; then
echo The two words match
fi
echo End of script
- The keyword £i must close the
$./if 2.sh

word 1- foo conditional statement

word 2: foo \ :
The two words match ° 1T you don't, you will get an error

End of script . £i is if spelled backwards

test

. testis a command that is often used inan if
statement

- But, while test evaluates the expression that follows, it
does not return true or false as you would expect

- In Unix, everything is text

o unless it is enclosed in double parentheses (())

o ...In wWhich case the contents are treated as numbers

- Most programming languages have boolean variables,
which can only have one of two values: True or False

test

- However, Unix does not have boolean values, so how
can test return a value that can be used inan if

statement?
- It returns a value through the status code

- Every program on Unix must return a status code before it
finishes running

o If the program runs without a hitch, then it returns a status
code of @

o If the program runs into a problem, then it returns a status
code greater than ©

test

- When you run test

o It evaluates an expression and...

o Returns @ if the expression is frue and 1 if the expression is
false

- In most scripting languages, @ is fa/se and any value
greater than @ is true

- But, this variation is useful when writing scripts because
It means we are not limitedto using test in
an if statement

test

- Every Unix command returns a status code, so we can use any
Unix command In an if statement:

$ cat if 3.sh
#! /bin/bash
##

a shell script that demonstrates the Unix if construct

if cd ~ghoffmn
then
echo was able to go to ~ghoffmn
fi
echo End of script

$./if 3.sh
was able to go to ~ghoffmn
End of script

test

- This means that a shell script could run a command that
might fail — and then take appropriate action if it does

- In bash, test is a built-in, a part of the shell

. test is also a stand-alone program

S which test
/usr/bin/test

- bash will always use the built-in version of test — unless
you specify the absolute pathname of the executable file

- The two versions differ slightly

The test operators

. test understands a number

of operators Operator Condition Tested

Two numbers are equal

o The operators test for

: " Two numbers are not equal
different conditions q

The first number is greater

o When used with two than, or equal to, the second

arguments, the operators are
placed between the
arguments

The first number is greater
than the second

The first number is less than,

- Some operators work only or equal to, the second

on numbers The first number is less than

the second

The test operators

- test uses different operators when comparing strings

Condition Tested

When placed between strings,
are the two strings the same

_ When placed between strings,

are the two strings not the same

- Note that test uses symbols (=) when comparing strings

- But letters preceded by a dash (-—eq) when comparing
numbers

The test operators

- There are a couple of operators that apply only to

a single string
Operator Condition Tested

Whether the string given as an argument
has a length greater than O

Whether the string given as an argument
has a length of O

- In these cases, the operator comes before the string

The test operators

- Other operators apply to files and directories

Condition Tested

Whether the argument is a directory

Operator

Whether the argument exits as a file or directory
Whether the argument is an ordinary file (not a directory)
Whether the argument exists and is readable

Whether the argument exists and has a size greater than O

Whether the argument exists and is writable

1 ||
B | Hh

Whether the argument exists and is executable

The test operators

- There are two additional operators that test uses when
evaluating two test expressions

- They are placed between the two expressions

Condition Tested

Operator

Logical AND meaning both expressions
must be true

Logical OR meaning either of the two
expressions must be true

The test operators

- The exclamation mark ! is a negation operator

- It inverts the value of the logical expression that follows it
o It changes a 7alse expression to true
o And a tfrue expression to false

- Some find it very hard to remember these operators

- This is why you may prefer not to write anything but the
simplest shell scripts

- If you need to write a script that uses conditionals, you might
consider doing it in a more programmer-friendly scripting
language like Per/ or Python

Using test 1in Scripts

- We can use test in an 1f statement

S if test foo = foo

> then

> echo "The two strings are equal"
> fi

The two strings are equal

- But, this looks very different from an if statement in
programming languages

Using test 1n Scripts

- To make the if statement look more like a "real"

programming language, Bash provides a synonym
for test a pair of square brackets: []

- To test whether the value of number1 is greater than
the value of number2 , you could write either

if test $numberl -gt Snumber2

* O

if [$Snumberl -gt $number2]

Using test i1n Scripts

- Whenever you use [] instead of test , there must be
a space before and after each square bracket

- If you don't, you will get an error message
$ [5 -ne 6]
-bash: [: missing]

- That's because Bash reads 6] as a single token which it
does not understand

- Putting a space between 6 and] makes it two tokens

Using test 1n Scripts

- The first thing to do when you get an error in a script using
[] is make sure you have spaces surrounding all your
square brackets

- test does not return a value to standard output
o test returns frue or false through the exit status
o An exit status of @ it means the condition was frue

o An exit status of 1 it means the condition was fa/lse
S [5 -eqg 4]; echo $? S [5 -ne 4]; echo §?
1 0

Checking the Arguments to a Script

- If a script must have a certain number of arguments, it
should check to see that it has been given them on the

command

- If a script ©

Ines
oesn't get the right number of arguments,

then it should print a usage message and exit

- A usage message has a standard form

Usage:

PROGRAM NAME ARGl ARG2

Checking the Arguments to a Script

- In a usage message, the strings that follow the program
name should be a word or words that indicates

o What kind information was required

o What kinds of information could be provided

- So if you had a script test dr.sh that needed the

name of a directory as an argument it's usage message
would be

Usage: test dr.sh DIR NAME

Checking the Arguments to a Script

- Let's look at an example

$ cat examples it244/usage 1l.sh

#! /bin/bash

this program demonstrates checking for arguments
and printing a usage message when

the expected arguments are not supplied

if test S# -eqg O

then
echo Usage: S$0 STRING
exit 1

fi

echo Received argument $1

Checking the Arguments to a Script

$ examples it244/usage 1l.sh
Usage: examples it244/usage 1l.sh STRING

$ examples it244/usage 1l.sh foo
Received argument foo

- The script first looks at the number of arguments it gets
which is contained in #

o If it receives zero arguments the script prints a usage
message and then quits with an exit status of 1

o Otherwise, it prints the argument it was given

Checking the Arguments to a Script

- The usage message uses the @ positional parameter
which contains the pathname that ran the script

o The pathname that appears in this usage message Is correct,
but it is also confusing

o What we really want in a usage message is the filename part
of the pathname

- We can strip out everything from the pathname except
the name of the file -- if we use Unix utility
called basename

Checking the Arguments to a Script

- basename takes a pathname as an argument and strips

out everything except for the filename

$ basename examples it244/usage 1l.sh
usage 1l.sh

- SO, a better version of this script would be...

$ cat examples it244/usage 2.sh

#! /bin/bash

this program demonstrates checking for arguments
and printing a usage message using basename

Checking the Arguments to a Script

if test S# -eq ©
then
echo Usage: $ (basename
$0) STRING
exit 1
fi
echo Received argument $S1

$ examples it244/usage 2.sh
Usage: usage 2.sh STRING

$ examples it244/usage 2.sh
foo
Received argument foo

- Here [used basename and
command substitution to
get the name of the file
without the path

- You don't need a usage
message if the script does
not require arguments

