
Scripting Control Structures I

• Shell Scripts

• Shell Script Control Structures

• The if ... then Construct

• test

• The test operators

• Using test in scripts

• Checking the Arguments to a Script

Shell Scripts

• Most of the rest of this course will deal with shell scripts

• Shell scripts are a series of Unix commands placed in a
file

o You can run a shell script like any other program

o Shell scripts allow you to automate certain routine operations

o Much of the work in Unix system administration is done
using shell scripts

• Shell script programming is not like other kinds of
programming

Shell Scripts

• Some differences...

o Unix commands are not uniform in the way they work because each
was developed separately by different people

o The control structures used in shell scripts are different from those
in programming languages

• Some will advise you to only write shell scripts for simple tasks

o If you need if statements or loops to write a script, then you may
prefer to use another scripting language, like Perl or Python

o Regardless, you should know how to read shell scripts

Shell Scripts

• When you run a shell script, your current shell creates a
sub-shell to run the script

• You must have both read and execute permissions to run
a script without using the bash command

Shell Script Control Structures

• Control structures allow commands in a script to be
executed in a different order

• Without control structures, a shell script could only

o start at the beginning...

o ...and go to the end once

which would limit what it could do

• There are two basic types of control structures

o Conditionals (Branching)

o Loops (Repetition)

Shell Script Control Structures

• Conditionals are statements where different things happen...

o based on some condition

o which is either true or false

• if statements are the conditional statements that you see

most often

• Loops are constructs that repeat a number of statements
until some condition is reached

• Shell scripts can have both conditionals and loops

The if ... then Construct

• The most basic conditional is the if ... then

construction, which has the format
if COMMAND
then

COMMAND_1
COMMAND_2
...

fi

o where COMMAND is any Unix command that returns an exit
status

o and COMMAND_1 , COMMAND_2 , ..., are a series of Unix
commands

The if ... then Construct

• The most commonly used command following if
is test

• It is used to test the truth of some condition

• Let's look at an example...

$ cat if_1.sh
#! /bin/bash

a shell script that demonstrates the Unix if
construct

....

if_1.sh
.....
echo -n "word 1: "
read word1
echo -n "word 2: "
read word2

if test "$word1" = "$word2"
then

echo The two words match
fi
echo End of script

$./if_1.sh
word 1: foo
...

...
word 2: foo
The two words match
End of script

$./if_1.sh
word 1: foo
word 2: bar
End of script

The if ... then Construct

• read is a utility that

o takes input from standard input...

o ...and stores that value in the variable given to it as an
argument

• Notice that echo was used with the -n option

o The -n option prevents echo from sending a newline
character – which would move down to the next line

o This allows echo print a prompt for input that will be read
by read

The if ... then Construct

• If the condition is true, then the statements that lie between
the then and fi keywords are run

• then must either be

o on a separate line from if

o or on the same line, but separated by a semi-colon

• Example:
$ cat if_2.sh
#! /bin/bash

a shell script that demonstrates the Unix if construct

....

if_2.sh.....
echo -n "word 1: "
read word1
echo -n "word 2: "
read word2

if test "$word1" = "$word2" ; then
echo The two words match

fi
echo End of script

$./if_2.sh
word 1: foo
word 2: foo
The two words match
End of script

• The keyword fi must close the

conditional statement

• If you don't, you will get an error

• fi is if spelled backwards

test

• test is a command that is often used in an if

statement

• But, while test evaluates the expression that follows, it

does not return true or false as you would expect

• In Unix, everything is text

o unless it is enclosed in double parentheses (())

o ...in which case the contents are treated as numbers

• Most programming languages have boolean variables,
which can only have one of two values: True or False

test

• However, Unix does not have boolean values, so how
can test return a value that can be used in an if

statement?

• It returns a value through the status code

• Every program on Unix must return a status code before it
finishes running

o If the program runs without a hitch, then it returns a status
code of 0

o If the program runs into a problem, then it returns a status
code greater than 0

test

• When you run test

o It evaluates an expression and...

o Returns 0 if the expression is true and 1 if the expression is
false

• In most scripting languages, 0 is false and any value
greater than 0 is true

• But, this variation is useful when writing scripts because
it means we are not limited to using test in
an if statement

test

• Every Unix command returns a status code, so we can use any
Unix command in an if statement:

$ cat if_3.sh
#! /bin/bash

a shell script that demonstrates the Unix if construct

if cd ~ghoffmn
then

echo was able to go to ~ghoffmn
fi
echo End of script

$./if_3.sh
was able to go to ~ghoffmn
End of script

test

• This means that a shell script could run a command that
might fail – and then take appropriate action if it does

• In bash , test is a built-in, a part of the shell

• test is also a stand-alone program

$ which test
/usr/bin/test

• bash will always use the built-in version of test – unless

you specify the absolute pathname of the executable file

• The two versions differ slightly

The test operators

• test understands a number

of operators

o The operators test for
different conditions

o When used with two
arguments, the operators are
placed between the
arguments

• Some operators work only
on numbers

Operator Condition Tested

-eq Two numbers are equal

-ne Two numbers are not equal

-ge
The first number is greater

than, or equal to, the second

-gt
The first number is greater

than the second

-le
The first number is less than,

or equal to, the second

-lt
The first number is less than

the second

The test operators

• test uses different operators when comparing strings

• Note that test uses symbols (=) when comparing strings

• But letters preceded by a dash (-eq) when comparing

numbers

Operator Condition Tested

=
When placed between strings,

are the two strings the same

!=
When placed between strings,

are the two strings not the same

The test operators

• There are a couple of operators that apply only to
a single string

• In these cases, the operator comes before the string

Operator Condition Tested

-n
Whether the string given as an argument

has a length greater than 0

-z
Whether the string given as an argument

has a length of 0

The test operators

• Other operators apply to files and directories

Operator Condition Tested

-d Whether the argument is a directory

-e Whether the argument exits as a file or directory

-f Whether the argument is an ordinary file (not a directory)

-r Whether the argument exists and is readable

-s Whether the argument exists and has a size greater than 0

-w Whether the argument exists and is writable

-x Whether the argument exists and is executable

The test operators

• There are two additional operators that test uses when

evaluating two test expressions

• They are placed between the two expressions

Operator Condition Tested

-a
Logical AND meaning both expressions

must be true

-o
Logical OR meaning either of the two

expressions must be true

The test operators

• The exclamation mark ! is a negation operator

• It inverts the value of the logical expression that follows it

o It changes a false expression to true

o And a true expression to false

• Some find it very hard to remember these operators

• This is why you may prefer not to write anything but the
simplest shell scripts

• If you need to write a script that uses conditionals, you might
consider doing it in a more programmer-friendly scripting
language like Perl or Python

Using test in Scripts

• We can use test in an if statement
$ if test foo = foo
> then
> echo "The two strings are equal"
> fi
The two strings are equal

• But, this looks very different from an if statement in
programming languages

Using test in Scripts

• To make the if statement look more like a "real"

programming language, Bash provides a synonym
for test a pair of square brackets: []

• To test whether the value of number1 is greater than
the value of number2 , you could write either

if test $number1 -gt $number2

• or
if [$number1 -gt $number2]

Using test in Scripts

• Whenever you use [] instead of test , there must be
a space before and after each square bracket

• If you don't, you will get an error message
$ [5 -ne 6]
-bash: [: missing `]'

• That's because Bash reads 6] as a single token which it
does not understand

• Putting a space between 6 and] makes it two tokens

Using test in Scripts

• The first thing to do when you get an error in a script using
[] is make sure you have spaces surrounding all your
square brackets

• test does not return a value to standard output

o test returns true or false through the exit status

o An exit status of 0 it means the condition was true

o An exit status of 1 it means the condition was false

$ [5 -eq 4]; echo $?
1

$ [5 -ne 4]; echo $?
0

Checking the Arguments to a Script

• If a script must have a certain number of arguments, it
should check to see that it has been given them on the
command lines

• If a script doesn't get the right number of arguments,
then it should print a usage message and exit

• A usage message has a standard form
Usage: PROGRAM_NAME ARG1 ARG2 ...

Checking the Arguments to a Script

• In a usage message, the strings that follow the program
name should be a word or words that indicates

o What kind information was required

o What kinds of information could be provided

• So if you had a script test_dr.sh that needed the

name of a directory as an argument it's usage message
would be

Usage: test_dr.sh DIR_NAME

Checking the Arguments to a Script

• Let's look at an example
$ cat examples_it244/usage_1.sh
#! /bin/bash
this program demonstrates checking for arguments
and printing a usage message when
the expected arguments are not supplied

if test $# -eq 0
then

echo Usage: $0 STRING
exit 1

fi
echo Received argument $1
...

Checking the Arguments to a Script

...
$ examples_it244/usage_1.sh
Usage: examples_it244/usage_1.sh STRING

$ examples_it244/usage_1.sh foo
Received argument foo

• The script first looks at the number of arguments it gets
which is contained in #

o If it receives zero arguments the script prints a usage
message and then quits with an exit status of 1

o Otherwise, it prints the argument it was given

Checking the Arguments to a Script

• The usage message uses the 0 positional parameter
which contains the pathname that ran the script

o The pathname that appears in this usage message is correct,
but it is also confusing

o What we really want in a usage message is the filename part
of the pathname

• We can strip out everything from the pathname except
the name of the file -- if we use Unix utility
called basename

Checking the Arguments to a Script

• basename takes a pathname as an argument and strips
out everything except for the filename
$ basename examples_it244/usage_1.sh
usage_1.sh

• So, a better version of this script would be...
$ cat examples_it244/usage_2.sh
#! /bin/bash
this program demonstrates checking for arguments
and printing a usage message using basename
.....

Checking the Arguments to a Script

.....
if test $# -eq 0

then
echo Usage: $(basename
$0) STRING

exit 1
fi
echo Received argument $1

$ examples_it244/usage_2.sh
Usage: usage_2.sh STRING

$ examples_it244/usage_2.sh
foo
Received argument foo

• Here I used basename and
command substitution to
get the name of the file
without the path

• You don't need a usage
message if the script does
not require arguments

