
Scripting Control Structures II

• The if ... then ... else ... Construct

• The if ... then ... elif ... Construct

• Debugging Scripts

• Indenting When Writing Scripts

• for ... in ... Loops

• for Loops

• Three-Expression for loops

The if...then...else... Construct

• Another Unix conditional is the if ... then ... else

... statement, which has the following format

if COMMAND
then

COMMAND_1
COMMAND_2
....

else
COMMAND_A
COMMAND_B
...

fi

The if...then...else... Construct

• If COMMAND returns an exit status of 0

o COMMAND_1, COMMAND_2, ... will be executed

• Otherwise, COMMAND_A, COMMAND_B, ... will be run

• Let's look at an example
$ cat cat_file.sh
#! /bin/bash
#
demonstrates the use of the if ... then ... else ... construct

if [$# -eq 0]
then

echo Usage: $(basename $0) filename
exit 1

fi
......

The if...then...else... Construct

....
if [-f $1]
then

cat $1
else

echo $1 is not a file
fi

$./cat_file.sh
Usage: cat_file.sh filename

$./cat_file.sh lines.txt
line 1
line 2
line 3
line 4
line 5

$./cat_file.sh foo
foo is not a file

• The second if statement does
one thing if the first argument is a
file – and another thing if it is not a
file

• The test command

[-f $1]

• returns a status code of 0 if the
first argument is the name of a file

• Otherwise, it returns 1

The if...then...elif...Construct

• The if ... then ... elif ...

construct lets you create nested
conditionals

• elif stands for "else if"

• Notice that elif must be followed
by then

• The then must either be on the
next line or on the same line,
separated by a semi-colon ;

if COMMAND
then

COMMAND_1
COMMAND_2
...

elif OTHER_COMMAND
then

COMMAND_A
COMMAND_B
...

...
else

COMMAND_N1
COMMAND_N2
...

fi

The if...then...elif...Construct

• While each else statement must be ended by a fi ...

• ... elif only requires a single fi at the end

• Let's look at an example
$ cat if_4.sh
#! /bin/bash
#
demonstrates the if ... then ... elif ... construction

echo -n "word 1: "
read word1
echo -n "word 2: "
read word2
echo -n "word 3: "
read word3
...

The if...then...elif...Construct

...
if [$word1 = $word2 -a $word2 = $word3]
then

echo "Match: words 1, 2 & 3"
elif [$word1 = $word2]
then

echo "Match: words 1 & 2"
elif [$word1 = $word3]
then

echo "Match: words 1 & 3"
elif [$word2 = $word3]
then

echo "Match: words 2 & 3"
else

echo No match
fi

$./if_4.sh
word 1: foo
word 2: bar
word 3: bletch
No match

$./if_4.sh
word 1: foo
word 2: foo
word 3: boo
Match: words 1 & 2

Debugging Scripts

• It is easy to make a mistake when writing a script

• Thus, it is a good idea to practice incremental development
when writing a script

• This means...

o Writing a few lines of the script

o Testing it and correcting errors

o Writing a few more lines

• To help you find bugs in your Bash script, you can
run bash with the -x option

Debugging Scripts

• The -x option causes bash

to print each command
before it executes the
commands on that line

$ cat match_three.sh
#! /bin/bash
#
takes three stings as
input and compares them

if [$# -lt 3]
then

echo Usage: $(basename $0) STRING1 STRING2 STRING3
exit 1

fi
....

...

if [$1 = $2 -a $2 = $3]
then

echo All arguments match
elif [$1 = $2]
then

echo Arguments 1 and 2 match
elif [$1 = $3]
then

echo Arguments 1 and 3 match
elif [$2 = $3]
then

echo Arguments 2 and 3 match
else

echo No arguments match
fi

Debugging Scripts

$ bash -x match_three.sh foo bar foo
+ '[' 3 -ne 3 ']'
+ '[' foo = bar -a bar = foo ']'
+ '[' foo = bar ']'
+ '[' foo = foo ']'
+ echo Arguments 1 and 3 match
Arguments 1 and 3 match

• Before bash prints a line from the script, it prints a plus sign +
to let you know that the line is not output from the script

• Notice that the script keeps running test commands
represented by [] until it finds one condition that evaluates
to true

Debugging Scripts

• Using bash with the -x option, you can trace the

path bash takes through your script

• This can help you find errors

Indenting When Writing Scripts

• Control structures work by marking off certain parts of the
script that are executed differently from the rest of the
script

• Most commands in a script are executed only once in the
order they appear in the script

• In if constructions, certain blocks of commands are only
executed under certain conditions

• In loop constructs, a block of commands is run more than
once

Indenting When Writing Scripts

• Special Unix keywords set off these blocks of commands

• Keywords like then , else , elif , and fi

• When writing scripts with control structures, it is a good
idea to indent all lines in a block of commands so it is clear
that they are treated differently from the rest of the script

• Let's look at the arg_test.sh script – which you wrote for

Class Exercise 22...

Indenting When Writing Scripts
#! /bin/bash
#
responds with the number of the arguments given
to this script

if test $# -eq 0
then

echo "You entered no arguments"
fi
if test $# -eq 1
then

echo "You entered 1 argument"
fi
if test $# -eq 2
then

echo "You entered 2 arguments"
fi
if test $# -gt 2
then

echo "You entered more than 2 arguments"
fi

Indenting When Writing Scripts

• Each block of commands
contained in each if ...

then statement is clearly
set off by the indent

• If we did not indent, we
would get this 

• This is much harder to read
than the indented version

• Indenting blocks of
commands in a control
structure is a good habit to
get into

#! /bin/bash
#
responds with the number of the
arguments given
to this script

if test $# -eq 0
then
echo "You entered no arguments"
fi
if test $# -eq 1
then
echo "You entered 1 argument"
fi
if test $# -eq 2
then
echo "You entered 2 arguments"
fi
if test $# -gt 2
then
echo "You entered more than 2 arguments"
fi

for ... in ... Loops

• The most common programming construct, after
the if statement, is the loop

• Looping can also be called repetition

• Bash provides many kinds of loops, but we'll start with
the for ... in loop, which has the following format
for LOOP_VARIABLE in LIST_OF_VALUES
do

COMMAND_1
COMMAND_2
...

done

for ... in ... Loops

• do must be on a different line from for – unless you place a
semicolon ; before the do (just like then in an if statement)

• The commands between do and done are repeated each time
through the loop

• In a for ... in loop, Bash

o Assigns the first value in the LIST_OF_VALUES to the variable specified
by LOOP_VARIABLE

o Executes the commands between do and done

o Assigns the next value in the LIST_OF_VALUES to the LOOP_VARIABLE

o Executes the commands between do and the done again

o And so on until each value in LIST_OF_VALUES has been used

for ... in ... Loops

• Here is an example
$ cat fruit.sh
#! /bin/bash
#
demonstrates the for in loop

for fruit in apples oranges pears bananas
do

echo $fruit
done
echo Task complete.

$./fruit.sh
apples
oranges
pears
bananas
Task complete.

for ... in ... Loops

• Notice that the variable fruit does not have a dollar sign in

front of it when it appears after for

• That's because here we are dealing with the variable itself, not
its value

• We are telling Bash which variable to use when storing the
values in the list

• The list of values can come from a number of different sources,
including but not limited to, these:

o A variable containing a list of values

o Pathname expansion

o Command substitution

for ... in ... Loops

• For example:
#!/bin/bash

#
Performs a long listing of all files
ending in .sh and then prints them
and changes their permissions to 755
#

for file in *.sh
do

ls -l $file
echo
cat $file
chmod 755 $file
echo

done

for Loops

• The for loop is simpler than the for ... in ... loop

• and has the following format
for LOOP_VARIABLE
do

COMMAND_1
COMMAND_2
...

done

• The difference between the two for loops is where they get
the values assigned to the loop variable

• The for ... in ... loop gets values from the list that
follows in

for Loops

• These values are "hard
coded" into the script

• They never change

• The plain for loop gets its
values from the command
line

• The plain for loop can
have different values each
time it is run

• Here is an example...

$ cat for_test.sh
#! /bin/bash
#
demonstrates the simple for loop

for arg
do

echo $arg
done

$./for_test.sh foo bar bletch
foo
bar
bletch

$./for_test.sh bing bang boom
bing
bang
boom

Three-Expression for Loops

• The for loops above are very different from the for loops in
programming languages

• In programming languages, the for statement

o Initializes a loop variable

o Tests the value of the loop variable to decide whether to run the
loop one more time

o Changes the loop variable at the end of the loop code

• for statements in programming languages create the
values used in the loop

Three-Expression for Loops

• But, the for loops above must be given the values used in
the loop

• In the for ... in ... statement, the values come
after in in the script itself

• In the plain for statement, the values are given at the
command line

• But, there is a third form of for loop in Bash

• This form creates the values for the loop variable – the same
way as the for loop in programming languages

Three-Expression for Loops

• It has the following form
for ((EXP1; EXP2; EXP3))
do

COMMAND_1
COMMAND_2
...

done

• Notice that the three expressions are inside double
parentheses

• That means that anything inside will be treated as numbers
not text

Three-Expression for Loops

• The three expressions are the loop control:

• The first expression sets the value of the loop variable

• The second is a logical expression. As long as it is true, the
loop will continue

• The third expression changes the value of the loop
variable after each pass through of the loop

• Let's look at an example. The key is the variable count

Three-Expression for Loops

$ cat count_to_five.sh
#! /bin/bash
#
this script demonstrates the
three expression for loop

for ((count=1; count<=5; count++))
do

echo $count
done

$./count_to_five.sh
1
2
3
4
5

• The expression count++

increases the value of
count by one

• Without this third
expression, the loop would
never end, and we would
have an infinite loop

