
Scripting Control Structures III

• while Loops

• until Loops

• continue

• break

• case Statement

• select Statement

while Loops

• The for loops we saw earlier keep running until all values

supplied to them have been used in the loop

• A while loop will continue running as long as the test

command returns a status code of 0

• while loops have the form
while COMMAND
do

COMMAND_1
COMMAND_2
...

done

while Loops

• As long as the COMMAND
returns a status code of 0,
the commands between
do and done will be run

• Let's look at an example

• The line after echo -n (the

one with the double
parentheses) tells Bash to
interpret the expression as a
number, not a string

$ cat count_to_nine.sh
#! /bin/bash
#
counts to 9, then stops

number=0
while [$number -lt 10]
do

echo -n $number
((number += 1))

done

$./count_to_nine.sh
0123456789

while Loops

• The += operator tells Bash to add the number that follows
(in this case, 1) to the current value of number

((number += 1))

• The echo command in the while loop uses the -n option

and does not print a newline

echo -n $number

• This allows the script to print the numbers one right after
the other, all on the same line

• To end the output and get a new line, we need the
final echo command

while Loops

• The condition that
the while loop tests must
change, or the while loop

will run forever

• The value of number never

changes, so the expression
given to test never

becomes false, and the
script loops forever (until it
is aborted)

$ cat forever.sh
#! /bin/bash
#
this loop runs forever

number=0
while [$number -lt 10]
do
echo $number

done

$./forever.sh
0
0
0
0

^C

until Loops

• The until loop is similar the while loop, except that
the until loop ends when the test condition becomes true

• Whereas the while loop stops when the text condition

becomes false

• The until loop has the form

until COMMAND
do

COMMAND_1
COMMAND_2
...

done

until Loops

• Here is an example:
$ cat count_until.sh
#! /bin/bash
#
counts from 1 to its argument, then stops

if [$# -eq 0]
then

echo Usage: $(basename $0) NUMBER
exit 1

fi
...

• while loops are used much more often
than until loops

...
number=1
until [$number -gt $1]
do
echo $number
((number += 1))

done

$./count_until.sh 6
1
2
3
4
5
6

$

continue

• Normally, a loop will run through all the commands
between do and done for each pass through the loop

• Sometimes, however, you want to skip all or part of the loop
commands – for a specific pass through the loop

• Let's say you are calculating interest for a group of savings
accounts

• In doing this, you perform a series of operations on all
savings accounts

• But, if you get to an account that has been closed, you don't
want to perform these operations

continue

• In other words, you want to stop working on a specific
account – but continue looping through the other accounts

• It is for situations like this that continue was created

• When the shell comes to continue inside a loop, it stops

running the loop code and jumps to the top of the loop to
begin another pass through the loop

• Let's look at an example....

continue

$ cat continue.sh
#! /bin/bash
#
demonstrates how continue works

total=0
for number in 1 2 3 4 5
do

if [$number -eq 2 -o $number -eq 4]
then

continue
fi
echo Adding $number to $total
((total += $number))

done
echo
echo total: $total

$./continue.sh
Adding 1 to 0
Adding 3 to 1
Adding 5 to 4

total: 9

• Whenever the variable number is

2 or 4, execution of the rest of the
code stops, and the next pass
through the loop begins

• continue does not cause the

script to break out of the loop; it
merely stops execution of the loop
code for one iteration

break

• Every time you start a loop, you specify what will cause the
loop to end

• With for ... in and simple for loops, the code exits

the loop when every value in the argument list has been
used

• In the while, until, and three-expression for loops, the

code exits the loop when a logical condition is met

• In all cases, the terminating condition is specified at the top
of the loop

break

• But, what if you encountered some unusual condition and
wanted to break out of the loop entirely?

• To do this, you would have to use break

• When bash comes across the break in the code inside a

loop, it jumps out of the loop completely – and proceeds
with the commands following the loop

• Let's look at an example...

break

$ cat break.sh
#! /bin/bash
#
demonstrates how break works

for filename in *
do

if [-x $filename]
then

echo First executable file: $filename
break

fi
done

$./break.sh
First executable file: bother.sh

• This script looks at each file in
the current directory

• When it finds a file that is
executable, it prints that
filename and stops

• The loop will end either

o When it finds an executable file

o Or when it has examined every
file and found no executable

break

• Notice how we got the values for the variable filename in
the for ... in loop.

• We used *

• When the script is run, the value of * on this line of the
script is replaced with the name of every file or directory in
the current directory

case Statement

• Sometimes a script needs to
take a specific path, depending
on the value of a single
variable

• You could do this with an if

... then ... elif

... statement

• But, there is a simpler structure
for such situations – the case

statement – which has the
following format...

case TEST_VARIABLE in
PATTERN_1)

COMMAND_1A
COMMAND_1B
COMMAND_1C
...
;;

PATTERN_2)
COMMAND_2A
COMMAND_2B
COMMAND_2C
...
;;

PATTERN_3)
COMMAND_3A
COMMAND_3B
COMMAND_3C
...
;;

...
esac

case Statement
• When Bash encounters a case statement, it

o Finds the first pattern that matches the test variable

o Runs the statements for that pattern

o Leaves the case statement

• Notice

o There is a right parenthesis) after each pattern

o The statements for each pattern end with two semi-colons ;;

o esac marks the end of the case statement

• esac is case spelled backwards

• Let's look at an example...

case Statement

$ cat case_1.sh
#! /bin/bash
#
demonstrates how the case statement
works

echo -n "Enter A, B, or C: "
read letter
case $letter in

A)
echo You entered A
;;

B)
echo You entered B
;;

C)
echo You entered C
;;

*)
echo You did not enter A, B, or C
;;

esac
echo Exiting program

$./case_1.sh
Enter A, B, or C: A
You entered A
Exiting program

$./case_1.sh
Enter A, B, or C: B
You entered B
Exiting program

$./case_1.sh
Enter A, B, or C: d
You did not enter A, B, or C
Exiting program

• Notice the last pattern *

• This pattern is a catchall
that will match any input

case Statement

• You should use this as the final pattern in a case statement

• This pattern will match anything that has not matched a
previous pattern

o The code for this pattern should print an error message because
the value of the variable was not expected

o You must put the * at the end of the pattern list because Bash will
never see any patterns that follow it since * matches everything

o If you don't use the asterisk, and a matching pattern is not found,
Bash will simply execute the code following esac

case Statement

• When creating patterns, you can use the metacharacters and the
logical OR

• The last symbol is a vertical line | which is the symbol for a
logical OR

• This symbol allows us to put many possible matches on the
same line

• We can use | to accept letters of either case

* Matches any string of characters

? Matches any single character

[] Every character within the brackets can match a single character in the test string

| Logical OR separates alternative patterns

case Statement
$ cat case_2.sh
#! /bin/bash
#
demonstrates the use of the | (logical or)
operator in patterns within a case statement

echo -n "Enter A, B, or C: "
read letter
case $letter in

a|A)
echo You entered A
;;

b|B)
echo You entered B
;;

c|C)
echo You entered C
;;

*)
echo You did not enter A, B, or C

;;
esac
echo Exiting program

$./case_2.sh
Enter A, B, or C: A
You entered A
Exiting program

$./case_2.sh
Enter A, B, or C: a
You entered A
Exiting program

select Statement

• The select statement is

used to create a menu
inside a shell script

• It needs a list of values,
which it turns into
numbered menu choices

• When the user enters a
number, the variable with
that number is assigned to
a loop variable

• A select statement has

following form

select LOOP_VARIABLE [in LIST_OF_VALUES]
do

COMMAND_1
COMMAND_2
COMMAND_3
...

done

• Notice that
in LIST_OF_VALUES

• is optional

select Statement

• The select statement needs

a list of values

o These values can be hard
coded into the script following
the in keyword

o Or, they can be supplied as
arguments at the command line

• In other words, the loop
variable can get its values the
same way a for loop can

• When Bash comes upon a
select statement, it

o Prints a menu on the screen

o Creates menu items for each of the values,
assigning each value a number

o Prints a prompt asking the user for input

o Reads a number from user input

o Assigns the value for that number to the
select variable

o Runs the statements
between do and done with that value

o Prints another prompt

select Statement

• The select statement is a loop construct that will run

forever, unless you do something to stop it

• Let's look at an example:
$ cat select_1.sh
#! /bin/bash
#
demonstrates how the select statement works

PS3="Choose your fruit: "
select fruit in apple banana blueberry orange
do

echo You chose $fruit
echo That is choice number $REPLY

done

• Here, we have hard coded the values into the script itself

select Statement

$./select_1.sh

1) apple

2) banana

3) blueberry

4) orange

Choose your fruit: 1

You chose apple

That is choice number 1

Choose your fruit: 2

You chose banana

That is choice number 2

...

...

Choose your fruit: 3

You chose blueberry

That is choice number 3

Choose your fruit: 4

You chose orange

That is choice number 4

Choose your fruit: ^C

select Statement

• We can also supply the values from the command line
$ cat select_2.sh
#! /bin/bash
#
demonstrates how the select structure works
taking argument from the command line

PS3="Choose your fruit: "
select fruit
do

echo You chose $fruit
echo That is choice number $REPLY

done

select Statement

$./select_2.sh peaches pears watermelons
1) peaches
2) pears
3) watermelons

Choose your fruit: 1
You chose peaches
That is choice number 1

Choose your fruit: 2
You chose pears
That is choice number 2

Choose your fruit: 3
You chose watermelons
That is choice number 3

Choose your fruit: ^C

• The only difference between these
two scripts is that

o the first has hard coded values ...

o while the second takes the values from
the command line

• In both scripts, Bash assigned a value
to the select variable fruit based

on the number chosen by the user

select Statement

• The select statement uses a number of keyword shell

variables

• The variable PS3 contains a string that the shell will use to

prompt for input

• If we had not given PS3 a value, the default

value #? would be used

• Let's look at an example...

select Statement

$ cat select_3.sh
#! /bin/bash
#
demonstrates the select statement where
PS3 has the default value

select fruit in apple banana blueberry orange
do

echo You chose $fruit
echo That is choice number $REPLY

done

$./select_3.sh
1) apple
2) banana
3) blueberry
4) orange
#? 3
You chose blueberry
That is choice number 3
#? 4
You chose orange
That is choice number 4
#? ^C

• Another keyword shell
variable used by select
is REPLY

• When the user enters a
number at the keyboard, the
value associated with that
number is assigned to the
loop variable, but the
number entered is assigned
to REPLY

select Statement

• Unless you include a
menu choice to jump
out of the loop, the
loop will go on forever

• The list of values
should include
something that can be
used to break out of
the loop

$ cat select_4.sh
#! /bin/bash
#
demonstrates a select menu with a stop value

PS3="Choose your fruit: "
select fruit in apple banana blueberry orange STOP
do

if [$fruit = STOP]
then

echo About to leave
break

fi
echo You chose $fruit
echo That is choice number $REPLY

done
echo Exiting program

select Statement

$./select_4.sh
1) apple
2) banana
3) blueberry
4) orange
5) STOP

Choose your fruit: 2
You chose banana
That is choice number 2

Choose your fruit: 5
About to leave
Exiting program

