Scripting Control Structures III

- while LooOps

- until Loops

- continue

- break

- case Statement

- select Statement

while Loops

- The for loops we saw earlier keep running until all values
supplied to them have been used in the loop

- A while loop will continue running as long as the test
command returns a status code of ©

- while loops have the form

while COMMAND
do
COMMAND 1
COMMAND 2

done

while

. As long as the COMMAND
returns a status code of 9,

the commands between
do and done will be run

- Let's look at an example

- The line after echo -n (the
one with the double
parentheses) tells Bash to
Interpret the expression as a
number, not a string

Loops

$ cat count to nine.sh

#! /bin/bash

#

counts to 9, then stops

number=0
while [$number -1t 10]
do

echo -n $number

((number += 1))
done

$./count to nine.sh
0123456789

while Loops

- The += operator tells Bash to add the number that follows
(in this case, 1) to the current value of number

((number += 1))
- The echo command in the while loop uses the -n option

and does not print a newline
echo -n Snumber

- This allows the script to print the numbers one right after
the other, all on the same line

- To end the output and get a new line, we need the
final echo command

while Loops

- The condition that
the while loop tests must
change, or the while loop

will run forever

- The value of number never
changes, so the expression
given to test never
becomes false, and the
script loops forever (until it
Is aborted)

S cat forever.sh
#! /bin/bash
#

this loop runs forever

number=0
while [S$Snumber -1t 10]
do
echo $number
done

S ./forever.sh
0
0
0
0

~C

until Loops

» The until loop is similar the while loop, except that
the until loop ends when the test condition becomes true

- Whereas the while loop stops when the text condition
becomes false

- The until loop has the form

until COMMAND
do
COMMAND 1
COMMAND 2

done

until Loops

- Here is an example: number=1
until [$number -gt $1]
$ cat count until.sh do
#! /bin/bash echo $number
((number += 1))
counts from 1 to its argument, then stops done
if [$# -eq 0] $./count until.sh 6
then 1 -
echo Usage: §$ (basename $0) NUMBER 2
exit 1 3
fi 4
5
6

- while loops are used much more often
than until loops

W

continue

- Normally, a loop will run through all the commands
between do and done for each pass through the loop

- Sometimes, however, you want to skip all or part of the loop
commands — for a specific pass through the loop

- Let's say you are calculating interest for a group of savings
accounts

- In doing this, you perform a series of operations on all
savings accounts

- But, if you get to an account that has been closed, you don't
want to perform these operations

continue

- In other words, you want to stop working on a specific
account — but continue looping through the other accounts

. It is for situations like this that continue was created

- When the shell comes to continue inside a loop, it stops

running the loop code and jumps to the fop of the loop to
begin another pass through the loop

- Let's look at an example....

continue

S cat continue.sh
#! /bin/bash
#

demonstrates how continue works

total=0
for number in 1 2 3 4 5
do
if [$Snumber -eq 2 -o $number -eq 4
then
continue
fi
echo Adding $number to $total
((total += $number))
done
echo
echo total: $total

]

$./continue.sh
Adding 1 to O
Adding 3 to 1
Adding 5 to 4

total: 9

- Whenever the variable number is
2 or 4, execution of the rest of the
code stops, and the next pass
through the loop begins

- continue does not cause the
script to break out of the loop; it
merely stops execution of the loop
code for one iteration

break

- Every time you start a loop, you specify what will cause the
loop to end

- With for ... inand simple for loops, the code exits
the loop when every value in the argument list has been
used

- Inthe while, until, and three-expression for loops, the
code exits the loop when a logical condition is met

- In all cases, the terminating condition is specified at the fop
of the loop

break

- But, what if you encountered some unusual condition and
wanted to break out of the loop entirely?

- To do this, you would have to use break

- When bash comes across the break in the code inside a

loop, it jJumps out of the loop completely— and proceeds
with the commands following the loop

- Let's look at an example...

break

ﬁ,c"}‘giﬁ’/’ﬁ:];fh . This script looks at each file in
the current directory

demonstrates how break works

- When it finds a file that is

for filename in *

do executable, it prints that
ti [-x $filename] filename and stops
en
echo First executable file: $filename
break . .
£i - The loop will end either
done

o When it finds an executable file
S ./break.sh

First executable file: bother.sh o Or when it has examined every
file and found no executable

break

- Notice how we got the values for the variable £ilename in
the for ... inloop.

- We used *

- When the script is run, the value of * on this line of the
script is replaced with the name of every file or directory in

the current directory

case Statement

- Sometimes a script needs to
take a specific path, depending
on the value of a single
variable

- You could do this with an i f
then ... elif
. statement

- But, there is a simpler structure
for such situations — the case

statement — which has the
following format...

case TEST VARIABLE in
PATTERN 1)
COMMAND 1A
COMMAND 1B
COMMAND 1C

PATTERN 2)
COMMAND 2A
COMMAND 2B
COMMAND 2C

PATTERN 3)
COMMAND 3A
COMMAND 3B
COMMAND 3C

esacC

case Statement

- When Bash encounters a case statement, it

o Finds the first pattern that matches the test variable
o Runs the statements for that pattern
o Leaves the case statement
- Notice
o There is a right parenthesis) after each pattern
o The statements for each pattern end with two semi-colons ;;
o esac marks the end of the case statement
- esac Is case spelled backwards

. Let's look at an example...

! /bin/bash

FH0n

demonstrates how the case statement

works

cat case 1.

case Statement

sh

echo -n "Enter A, B, or C: "

read letter
case Sletter

A)
echo
B)
echo
C)
echo
*) A 4
echo
esac

echo Exiting

in

You entered A

You entered B

You entered C

You did not enter A, B,

program

or C

$./case 1l.sh

Enter A, B, or C: A
You entered A
Exiting program

$./case 1l.sh

Enter A, B, or C: B
You entered B
Exiting program

$./case 1l.sh
Enter A, B, or C: d

You did not enter A, B, or C
Exiting program

- Notice the last pattern *

- This pattern is a catchall
that will match any input

case Statement

- You should use this as the #inal patternin a case statement

- This pattern will match anything that has not matched a
previous pattern

o The code for this pattern should print an error message because
the value of the variable was not expected

o You must put the * at the end of the pattern list because Bash will
never see any patterns that follow it since * matches everything

o If you don't use the asterisk, and a matching pattern is not found,
Bash will simply execute the code following esac

case Statement

- When creating patterns, you can use the metacharacters and the
logical OR

Matches any string of characters

Matches any single character

Every character within the brackets can match a single character in the test string

Logical OR separates alternative patterns

- The last symbol is a vertical line | which is the symbol for a
logical OR

» This symbol allows us to put many possible matches on the
same line

- We can use | to accept letters of either case

case Statement

S cat case 2.sh
#!' /bin/bash
#
#

demonstrates the use of the | (logical or) S . /Case_2 .sh
operator in patterns within a case statement Enter A, B, or C: A
echo -n "Enter A, B, or C: " You entered A
read letter -y
case $letter in Exiting program
a|a)

echo You entered A

X $./case 2.sh

b|B)

echo You entered B Enter A, B, or C: a
ciey You entered A

echo You entered C Exiting program

*) r 7
echo You did not enter A, B, or C
esac
echo Exiting program

select Statement

- The select statement is . A select statement has
used to create a menu following form
inside a shell script

. It n.eeo!s a list Qf values, COMMAND, 1
which It turns into COMMAND_2

select LOOP_VARIABLE [in LIST_OF_VALUES]
do

numbered menu choices COMMAND_3
- When the user enters a done
number, the variable with - Notice that
that number is assigned to in LIST_OF VALUES

a loop variable - Is optional

select Statement

- The select statement needs . When Bash comes upon a

a list of values select statement, it
o These values can be hard o Prints a menu on the screen
coded into the SCI‘ipt following o Creates menu items for each of the values,

the in keyword assigning each value a number

_ o Prints a prompt asking the user for input
o Or, they can be supplied as

. o Reads a number from user input
arguments at the command line

o Assigns the value for that number to the
- In other words, the loop select variable

variable can get its values the o Kuns the statements
9 between do and done with that value

same way a for |OOP can o Prints another prompt

select Statement

- The select statement is a /oop construct that will run
forever, unless you do something to stop it

- Let's look at an example:

$ cat select 1.sh
#! /bin/bash
#

demonstrates how the select statement works

PS3="Choose your fruit: "
select fruit in apple banana blueberry orange

do
echo You chose $fruit
echo That is choice number S$REPLY

done

- Here, we have hard coded the values into the script itself

select Statement

$./select 1.sh .
1) apple Choose your fruit: 3

2) banana You chose blueberry

3) blueberry That is choice number 3
4) orange Choose your fruit: 4
Choose your fruit: 1 You chose orange

You chose apple That is choice number 4
That is choice number 1 Choose your fruit: ~C

Choose your fruit: 2
You chose banana
That is choice number 2

select Statement

- We can also supply the values from the command line

$ cat select 2.sh

#!' /bin/bash

#

demonstrates how the select structure works
taking argument from the command line

PS3="Choose your fruit: "
select fruit

do
echo You chose S$fruit

echo That is choice number SREPLY
done

select Statement

$./select 2.sh peaches pears watermelons
1) peaches

2) pears

3) watermelons

oh o - The only difference between these
oose your fruit: 1 . .
You chose peaches two scripts is that

That is choice number 1 .
_ o the first has hard coded values ...
Choose your fruit: 2

You chose pears o While the second takes the values from
That is choice number 2 the command line

Choose your fruit: 3 . .

You chose watermelons ¢ In bOth SCFIptS, BaSh aSSIQHEd d Value

That is choice number 3 to the select variable £fruit based
Choose your fruit: “C on the number chosen by the user

select Statement

» The select statement uses a number of keyword shell
variables

- The variable PS3 contains a string that the shell will use to
prompt for input

- If we had not given PS3 a value, the default
value #? would be used

- Let's look at an example...

select Statement

$ cat select 3.sh
#! /bin/bash
#

demonstrates the select statement where

PS3 has the default value y An(.)ther keyword shell
select fruit in apple banana blueberry orange yarlable used by select
do is REPLY

echo You chose S$fruit
echo That is choice number S$REPLY
done

- When the user enters a
number at the keyboard, the

$./select 3.sh

1) apple value associated with that

2) banana . .

3) blueberry number is assigned to the

4) orange .

#2 3 loop variable, but the

You chose blueberry . .

That is choice number 3 number entered is assighed
#2 4

You chose orange to REPLY

That is choice number 4
#? ~C

select Statement

- Unless you include a $ cat select 4.sh

menu choice to jump #! /bin/bash-
out Of the |OOp, the # demonstrates a select menu with a stop value
|OO W| | O ON forever PS3="Choose your fruit: "
p g select fruit in apple banana blueberry orange STOP
. do
- The list of values if [$€ruit = STOP |
. then
should include 1<§chokAbout to leave
. rea
something that can be £i |
echo You chose $fruit
used to break out of 3 echo That is choice number $REPLY
one

the |Oop echo Exiting program

select Statement

$./select 4.sh

1) apple

2) banana

3) blueberry

4) orange

5) STOP

Choose your fruit: 2

You chose banana
That is choice number 2

Choose your fruit: 5
About to leave
Exiting program

