
Miscellaneous Scripting Tools

• read Command

• Here Documents

• Using Braces { } with Variables

• Array Variables

• Special Parameters
o $ - The PID

o ! - The PID of the Last Process
Put into the Background

o ? The Exit Status

• Positional Parameters
o # - The Number of Command

Line Arguments

o 0 - The Pathname of the Script

o 1 - n - The Command Line
Arguments

o * and @ - All the Command Line
Arguments

o shift - Promotes Command
Line Arguments

o set - Initialize Command Line
Arguments

read Command

• In order to get input from the user without using command
line arguments, we need to use the read command

• When Bash comes across a read command, it

o Waits for the user to enter some text at the terminal

o Assigns the text entered by the user to the variable following
the read command

• Let's look at an example...

read Command

$ cat read_1.sh
#! /bin/bash
#
demonstrate use of the read command

echo -n "Please enter a word: "
read reply
echo You entered: $reply

$./read_1.sh
Please enter a word: foo
You entered: foo

read Command

• When read takes in a value from the terminal, it grabs
everything the user types until they hit Enter

$./read_1.sh

Please enter a word: foo bar bletch

You entered: foo bar bletch

• In the script above, we used echo to print a prompt for the
user, but we can also use the -p option to have read issue
the prompt...

read Command

$ cat read_2.sh
#! /bin/bash
#
demonstrate use of the read command
using the prompt option

read -p "Please enter a word: " reply
echo You entered: $reply

$./read_2.sh
Please enter a word: foo
You entered: foo

read Command

• By default, the read command will not allow you to edit
the text using the readline library commands

$./read_2.sh
Please enter a word: foooo^?^?^?
You entered: foooo

• Here we have hit the backspace key three times

• But, the read command normally ignores this; however, it
can be forced to allow command line editing, if you use
the -e option to read

Here Documents

• Scripts can read data from a file like any Unix command

• But sometimes, you want the data to be contained inside the
script itself

• You might want to do that to make a script easier to deploy
since you would not have to distribute a second (data) file
along with the script

• This can be accomplished with a here document

• A here document is a feature of Bash that allows a file to be
included within a script, which the script can read for its input

Here Documents

• Here is an example...

$ cat here.sh
#! /bin/bash
#
demonstrates how here documents work

read -p "Please enter a city: " city
grep $city << EOF
Boston Red Sox
New York Yankees
Toronto Blue Jays
Baltimore Orioles
Tampa Bay Rays
EOF

Here Documents
$./here.sh
Please enter a city: Boston
Boston Red Sox

• The script contains a list of all American League Eastern
Division baseball teams, along with the cities in which they
play

• The here document begins with the two less than
symbols << followed immediately by a string

• In the script above, we have chosen "EOF" as the string

• This string will serve to mark the beginning and end of the
here document

Here Documents

• This string can be anything you like, as long as it contains
no whitespace

• Bash will look for another occurrence of the same string on
a line by itself and read that as the end of the here
document

• Nothing must appear on the line after the first string, and
the second appearance of the sting must be on a line by
itself

Using Braces { } with
Variables

• Normally, when we use the value of a variable, any text
following the variable name is separated by whitespace
$ team=Bruins

$ echo Go $team
Go Bruins

• But, what if you needed to use the value of the variable as
part of a larger string?

• If the following string starts with a period . or a
slash / there is no problem

• Here is an example...

Using Braces { } with
Variables

$ filename=test

$ echo Creating $filename.txt
Creating test.txt

$ dirname=test_dir

$ echo Creating $dirname/test.txt
Creating test_dir/test.txt

• But with any other text you run into difficulty
$ echo Creating $filename_1.txt
Creating .txt

• Bash did not see the variable filename next to the string
"_1.txt"

Using Braces { } with
Variables

• Instead, it saw a new variable, filename_1 , which was not
defined. Since this variable was not defined, it has no value

• In order to concatenate the value of a variable with a string,
we need to use braces

• The braces surround the name of the variable

• They set off the name of the variable from surrounding text
$ echo Creating ${filename}_1.txt
Creating test_1.txt

• The braces surround the variable name and the opening
brace comes after the dollar sign $

Array Variables

• bash supports one-dimensional array variables

• An array can hold many individual values

• An array variable is defined as follows
VARIABLE_NAME=(ELEMENT1 ELEMENT2 ...)

• For example
$ cities=(Boston Chicago Philadelphia Cleveland)

• Notice that there are no spaces on either side of the equal
sign = but spaces are required between individual array
values

Array Variables

• To access the array values we must
o Follow the name of the variable with square brackets

o Have a number inside the square bracket indicating the desired
value

o Enclose the variable name and the square bracket inside braces

• Here is an example
$ echo ${cities[0]}
Boston

$ echo ${cities[1]}
Chicago

Array Variables

• Notice that the array elements are numbered starting with 0

• If you don't use the square brackets, you will simply get the
first value of the array
$ echo $cities
Boston

• If you don't use the braces, you will not get the results you
expect
$ echo $cities[2]
Boston[2]

• Since I did not put braces around cities[2], bash simply
appended the string "[2]" to the value of the first entry

Array Variables

• There are two symbols that can be used to get all the values
in an array
$ echo ${cities[*]}
Boston Chicago Philadelphia Cleveland

$ echo ${cities[@]}
Boston Chicago Philadelphia Cleveland

• The asterisk * turns all the elements of the array into
a single string with the values separated by spaces

• The at sign @ reproduces the original array. That is, it
creates a new array with the same elements in the same
order

Array Variables

• Each element of the array remains distinct

• We can see this if we use the declare built-in

• declare is normally used to set the attributes of a variable,
and one of those attributes is whether the variable is an
array

• You can also use declare to list every variable which is an
array

• To do this run declare with a dash - followed by an
attribute, but no argument

Array Variables

• So if we run declare with the -a option, it will display all
array variables
$ c1=("${cities[*]}")

$ echo $c1
Boston Chicago Philadelphia Cleveland

$ c2=("${cities[@]}")

$ echo $c2
Boston

$ declare -a
...

Array Variables

declare -a c1='([0]="Boston Chicago Philadelphia
Cleveland")'

declare -a c2='([0]="Boston" [1]="Chicago" [2]=
[3]="Cleveland")'

declare -a cities='([0]= [1]="Chicago"
[2]="Philadelphia" [3]="Cleveland")'

• The variable c1 is an array with only one element

• That element is a string composed of all the values in the
original array variable

• c2 is an array variable with exactly the same entries
as cities in the same order

Array Variables

• You can use the hash mark # to get the length of an array
value.

• Place the # within the curly braces, immediately in front of
the array name, followed by the index number, inside
square brackets
$ echo ${cities[0]}
Boston
$ echo ${#cities[0]}
6

• We can use an array variable to present a list of arguments
to a script...

Array Variables

$ cat print_args.sh
#! /bin/bash
#
prints the arguments given on the command line

for arg
do

echo $arg
done

$./print_args.sh ${cities[*]}
Boston
Chicago
Philadelphia
Cleveland

Array Variables

• You assign a new value to an element of an array the same
way you assign a value to an ordinary variable
$ cities[3]=Akron

$ echo ${cities[@]}
Boston Chicago Philadelphia Akron

• Array variables will not be on the final

Special Parameters

• Special parameters are shell variables whose values are
automatically set by Bash

• The parameters contain information about the current shell
environment

• They are very useful when writing shell scripts

• Bash sets the values of these parameters based on the state
of current environment

$ - PID of Current Shell Process

• The special parameter $ contains the process ID (PID) of the
current shell

• If you echo the $ at the command line, you will get the
process ID of your current shell
$ echo $$
6834

$ ps
PID TTY TIME CMD

6834 pts/1 00:00:00 bash
7024 pts/1 00:00:00 ps

• Notice that the value returned is the same as that of the
shell

$ - PID of Current Shell Process

• Notice also that $ is the name of the parameter, so we had
to put a $ in front of it to get its value

• The $ special parameter is very useful when creating
temporary files

• When you create a temporary file you want to be sure the
name is unique

• Otherwise, you might overwrite a temp file created by
another process

$ - PID of Current Shell Process

• You can create a unique temp file using the special
parameter like this
$ tmp=$$tmp

$ echo $tmp
6834tmp

! - The PID of the Last Process
Put into the Background

• ! contains the process ID (PID) of the last process put into
the background
$ sleep 60 &
[1] 7347

$ echo $!
7347

! - The PID of the Last Process
Put into the Background

• You can use ! to kill a job that you just ran
$./bother.sh > /dev/null &
[1] 5274

$ jobs
[1]+ Running ./bother.sh > /dev/null &

$ echo $!
5274

$ kill $!
[1]+ Terminated ./bother.sh > /dev/null

$ jobs

$

? - The Exit Status

• The ? special parameter returns the exit status of the last
command
$ pwd
/home/it244gh/it244/work

$ echo $?
0

$ ls asdfasd
ls: cannot access asdfasd: No such file or directory

$ echo $?
2

? - The Exit Status

• The first command succeeds and returns an exit status of 0, while
the second fails and returns a non-zero exit status

• You can set the exit code in a shell script by using the exit built-
in

$ cat exit.sh
#! /bin/bash
#
demonstrates the use of the exit command with a status code

exit 2

$./exit.sh

$ echo $?
2

• The exit status is also called the condition code or the return code

Positional Parameters

• Positional parameters give the value of the command line
arguments to a shell script

• They can also be used with functions

- The Number of Command Line
Arguments

• The # positional parameter contains the number of
command line arguments
$ cat arg_count.sh
#!/bin/bash
#
Prints the number of arguments sent to this script

echo This script received $# arguments

$./arg_count.sh foo bar bletch
This script received 3 arguments

• This parameter allows you to check if your script has
received all the arguments it needs

0 - The Pathname of the Script

• The 0 positional parameter contains the full pathname
used to call the script
$ cat command_name.sh
#!/bin/bash
#
prints the pathname by which called this script

echo This sript was called using the pathname $0

$./command_name.sh
This sript was called using the pathname
./command_name.sh

$ /home/ghoffmn/examples_it244/command_name.sh
This sript was called using the pathname
/home/ghoffmn/examples_it244/command_name.sh

0 - The Pathname of the Script

• You should use this parameter when creating a usage
message

• But, you should use it with the basename command to
remove the path part of the pathname

n - The Command Line Arguments

• The numbered positional parameters are used to give
command line arguments to a script or to a function

• Here is an example...

$ cat print_positionals.sh
#!/bin/bash
#
Prints the value of the first four positional arguments

echo 0: $0
echo 1: $1
echo 2: $2
echo 3: $3

n - The Command Line Arguments

$./print_positionals.sh foo bar bletch
0: ./print_positionals.sh
1: foo
2: bar
3: bletch

• If there is no corresponding command line argument, then
the parameter will have no value
$./print_positionals.sh foo bar
0: ./print_positionals.sh
1: foo
2: bar
3:

• You cannot run test on a positional parameter if there is
no corresponding command line argument

n - The Command Line Arguments

• If you do, you will get an error

$ cat greater_than_zero.sh
#! /bin/bash
#
this script tests whether its first command line
argument is greater than 0

if [$1 -gt 0]
then

echo $1 is greater than 0
else

echo $1 is not greater than 0
fi

n - The Command Line Arguments

$./greater_than_zero.sh
./greater_than_zero.sh: line 5: [: -gt: unary operator
expected
is not greater than 0

• This is why you need to check for the correct number of
arguments whenever your script takes arguments from the
command line

@ - All the Command Line Arguments

• There are two special parameters that can be used to
return all arguments from the command line

• They are * and @

• Both return all the arguments from the command line
$ cat special_param_test_1.sh
#! /bin/bash
#
demonstrates some properties of the special
parameters $* and $@

echo 'Here is $*: ' $*
echo 'Here is $@: ' $@

@ - All the Command Line Arguments

$./special_param_test_1.sh 1 2 3 4 5
Here is $*: 1 2 3 4 5
Here is $@: 1 2 3 4 5

• You can use them in for ... in loops

$ cat special_param_test_2.sh
#! /bin/bash
#
demonstrates some properties of the special
parameters $* and $@

echo 'The $* loop'
for arg in $*
do

echo $arg
done
....

@ - All the Command Line Arguments

....

echo 'The $@ loop'
for arg in $@
do
echo $arg

done

• So, why does bash give us
two different parameters
that appear to do the same
thing?

• Because they are subtly
different

$./special_param_test_2.sh 1 2 3 4 5
The $* loop
1
2
3
4
5
The $@ loop
1
2
3
4
5

@ - All the Command Line Arguments

• When you enclose $* within double quotes it's value is a
single string

• That single string consists of all command line arguments,
concatenated together with a space between them

• But, when you enclose $@ within double quotes, its value is
a list of separate strings – one for each command line
argument

• Let's look at an example...

@ - All the Command Line Arguments

$ cat special_param_test_3.sh
#! /bin/bash
#
demonstrates some properties of the special
parameters $* and $@

echo 'The $* loop'
for arg in "$*"
do
echo $arg

done

echo 'The $@ loop'
for arg in "$@"
do
echo $arg

done

@ - All the Command Line Arguments

$ special_param_test_3.sh 1 2 3 4 5
The $* loop
1 2 3 4 5
The $@ loop
1
2
3
4
5

• The difference between $* and $@ only appears when they
are placed inside double quotes

• $* and $@ will not be on the final

shift: Promotes Command Line Arguments

• The shift built-in promotes command line arguments

• This means that...
o the value of positional parameter 2 is assigned to positional

parameter 1

o and the value of positional parameter 3 is assigned to positional
parameter 2

o and so on...

• Let's look at an example...

shift: Promotes Command Line Arguments

$ cat shift_1.sh
#! /bin/bash
#
demonstrates the use of
the shift command

echo '$1: ' $1
echo '$2: ' $2
echo '$3: ' $3
echo '$4: ' $4

echo
echo shifting arguments
shift
echo

echo '$1: ' $1
echo '$2: ' $2
echo '$3: ' $3
echo '$4: ' $4

$./shift_1.sh foo bar
bletch bling
$1: foo
$2: bar
$3: bletch
$4: bling

shifting arguments

$1: bar
$2: bletch
$3: bling
$4

shift: Promotes Command Line Arguments

• After shift is called, all arguments move up one position,
and the first argument value is lost

• It is not possible to get the value of the first parameter after
shift has been called

• If shift is called with a numeric argument, all arguments
are moved up that number of positions

• Let's look at an example...

shift: Promotes Command Line Arguments

$ cat shift_2.sh
#! /bin/bash
#
demonstrates the use of the
shift command with an
integer argument

echo '$1: ' $1
echo '$2: ' $2
echo '$3: ' $3
echo '$4: ' $4

echo
echo shifting arguments by 2
shift 2
echo

echo '$1: ' $1
echo '$2: ' $2
echo '$3: ' $3
echo '$4: ' $4

$./shift_2.sh foo bar bletch
bling
$1: foo
$2: bar
$3: bletch
$4: bling

shifting arguments by 2

$1: bletch
$2: bling
$3:
$4:

shift: Promotes Command Line Arguments

• The first two command line arguments are lost
after shift is called, and every positional parameter moves
up 2 positions

• shift comes in handy when you want to write a script that
loops over all command line arguments
$ shift_3.sh
#! /bin/bash
#
demonstrates the use of the shift in a while loop

while [! -z $1]
do

echo 'The value of $1 is ' $1
shift

done

shift: Promotes Command Line Arguments

$./shift_3.sh foo bar bletch bling blam
The value of $1 is foo
The value of $1 is bar
The value of $1 is bletch
The value of $1 is bling
The value of $1 is blam

• shift keeps promoting arguments until there are no more
left

• The -z option to test returns true if the length of what
follows is zero

• But the not operator ! makes the test true when the string
is greater than zero

set: Initialize Command Line
Arguments

• The set command can create positional arguments from
within a script

• Normally, the positional parameters take their value from
the command line arguments

• If you call set and follow it with a list of values,
then set will assign each of those values to a positional
parameter – and any values from the command line are lost

• Each of the values following set are loaded into the
corresponding positional parameter, starting with 1

set: Initialize Command Line Arguments

$ cat set.sh
#! /bin/bash
#
demonstrates using the set command to assign values
to positional parameters

echo This script received $# arguments from the command line
echo '$1: ' $1
echo '$2: ' $2
echo '$3: ' $3
echo '$4: ' $4

echo
echo 'After set bloo blah blim blak'
set bloo blah blim blak
echo '$1: ' $1
echo '$2: ' $2
echo '$3: ' $3
echo '$4: ' $4

set: Initialize Command Line Arguments
$./set.sh foo doo ewe goh
This script received 4 arguments from the command line
$1: foo
$2: doo
$3: ewe
$4: goh

After set bloo blah blim blak
$1: bloo
$2: blah
$3: blim
$4: blak

• This script was run with one set of positional parameters

• But, after I ran set , the positional parameters had different
values

set: Initialize Command Line Arguments

• set is a built-in command

• set has a completely different behavior when called with
the -o or +o options

• With those options, the set command sets or unsets a shell
option that alters the way bash behaves

• set will not be on the final

