12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

IT 244: Introduction to Linux/Unix
Class 27

Today's Topics
Review

Running a Command in the Background
Jobs

Moving a Job from the Foreground into the Background
Aborting a Background Job

Pathname Expansion

The ? Meta-character

The * Meta-character

The [and]| Meta-characters

Built-ins

Ways a Shell Can Be Created

Your Login Shell

Interactive Non-login Shells

Non-interactive Shells

Creating Startup Files

Running a Startup File after a Change has been Made
Commands that are Symbols

File Descriptors

Redirecting Standard Error

Shell Scripts

Making a Shell Script Executable

Specifying Which Version of the Shell Will Run a Script
Comments in Shell Scripts

Separating and Grouping Commands

| (pipe) and & (ampersand) as Command Separators

Continuing a Command onto the Next Line
Using Parentheses. () . to Run a Group of Commands in a Subshell
Shell Variables

Local Variables

Global Variables

Keyword Shell Variables

Important Keyword Shell Variables
User-created Variables

Quoting and the Evaluation of Variables
Removing a Variable's Value

Processes

Process Structure

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 1/32

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

e Process Identification

e Executing a Command

e History

e Using the History Mechanism

e The Readline Library

e Readline Completion

e Command Completion

e Pathname Completion

e Variable Completion

e Aliases

e Single Quotes Versus Double Quotes in Aliases
¢ Functions

e Shell Modification of the Command Line
e History Expansion

e Alias Substitution

e Brace Expansion

e Tilde, ~. Expansion

e Parameter and Variable Expansion
e Arithmetic Expansion

e Command Substitution

e Pathname Expansion

e Shell Script Control Structures

e The if... then ... Construct

* fest

e The test operators

e Using fest in Scripts

e The if... then ... else ... Construct
e The if... then ... elif... Construct
e Debugging Scripts

e for..in.. Loops

* for Loops

» Three Expression for loops

e while Loops

e until Loops
e continue

* break

e case Statement

e read Command

e Using Braces, {} . with Variables
e Special Parameters

¢ ? The Exit Status

e Positional Parameters

e # - The Number of Command Line Arguments
e () - The Pathname of the Script

e 1 -n-The Command Line Arguments

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 2/32

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

Running a Command in the Background

e Normally, when you run a command ...

e you have to wait for it to finish

e Such commands are said to be running in the foreground

e Unix gives you a way to get the command prompt back ...

e after running a command that will take a long time to finish
* You can run the command in the background

e The background job loses it's connection to the keyboard ...
 and the shell will give you a prompt

e The shell will tell you when the background job has finished
e Every time a program runs, a process is created

e The process has access to system resources ...

e like memory (RAM) and a connection to the filesystem

e Unix, like most OSs, is a multitasking operating system

e This means you can have more than one process running at a time
e To run a command in the background ...

e enter an ampersand, & , at the end of the command line ...
e just before hitting Enter:

$ sleep 5 &
[1] 17895
$

Jobs

e Every time you type something at the command line ...

e and hit Enter ...

e you are creating a job

e Every time a program runs ...

e aprocess 1is created for that program

* A pipeline is a collection of commands joined by pipes

e Each command will generate its own process ...

 but the collection of all the separate processes ...

e is a single job

e Each process in a pipeline will have its own process ID

* So as the pipeline progresses, the currently running process will change ...
 but the job number does not change

e The job is the collection of all processes created at the command line
* You can have multiple jobs running at the same time ...

e but only one job can be in the foreground at any one time

e Every process has a process ID number ...

e and every job has a job number

e When you tell the shell to run a job in the background ...

e it returns two numbers:

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 3/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#foreground
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#background
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#process
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#job

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th
$ sleep 5 &
[1] 7431

e The job number is enclosed in brackets and comes first

e The second, larger, number is the process identification number ...
e of the first process in the job

e The process identification number is also known as the PID

e When the job finishes, the shell prints out a message

[1]+ Done sleep 5

e The message does not appear the moment the job finishes
e The shell waits for the next time you hit Enter ...
e and it prints the message after the output from the command

Moving a Job from the Foreground into the Background

e There can only be one foreground job ...

e though you can have many background jobs

e Unix will let you move a job from the foreground ...

e to the background

e To do this, you must first suspend the foreground job

e A suspended job is not dead ...

e it is in a state of suspended animation

* You can reactivate it later

e To suspend a foreground job you must use the suspend key sequence
e On our systems you suspend a job by hitting Control Z

e After you do this, the shell stops the current process

e [t also disconnects it from the keyboard

e Once the job is suspended ...

e you can place it in the background using the bg command
e bg stands for background

e Once placed in the background, the job resumes running
e If more than one job is running ...

e you must give bg the job number

Aborting a Background Job

e There are two ways to abort a background job

* You can bring a job from the background to the foreground ...
e using the fg (foreground) command

e Once you have the job in the foreground ...

e you can abort it using Control C

e When there is more than one job in the background ...

e you must specify the job number when using fg

e You can also terminate any job using the ki// command

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 4/32

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

e But to use ki/l you must tell it what to kill

e The usual way to do this is to give kill a process ID

e If you don't remember the process ID ...

e run ps (process status) to get the process ID (PID)

* You can also use the job number with kil/ ...

e but you must precede a job number with a percent sign, %
* You can get the job number by using the jobs command

Pathname Expansion

e Pathname expansion allows you to specify a file or directory ...

e without typing the full name

e [t also allows you to specify more than one file or directory ...

e with a single string of characters

e Pathname expansion uses characters with special meaning to the shell
e These special characters are called meta-characters

e Meta-characters are also sometimes called wildcards

e They allow you to specify a pattern

e When the shell sees one of these characters on the command line ...
e it replaces the pattern with a sorted list ...

 of all pathnames that match the pattern

e The shell then runs this altered command line

e The pattern is called an ambiguous file reference

e You can use as many meta-characters as you want to form a pattern
e Pathname expansion is different from pathname completion ...

e which you get by hitting Tab

The ? Meta-character

The question mark, ? , meta-character stands for a single instance of any character
? can be used with any command ...
even those that don't normally deal with files

$ echo dir?
dirl dir2 dir3 dir4

The ? meta-character does not match a leading period in a filename
You must explicitly enter a leading period, .
when specifying an "invisible" file

The * Meta-character

e An asterisk, * , will match any number of characters in a pathname
e [t will even match no characters

e * can be used with any command ...

e cven those that don't normally deal with files

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 5/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#pathname_expansion
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#meta-characters
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#wildcards
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#ambiguous_file_reference
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#pathname_completion

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

$ echo dir*
dir dirl dirle dir2 dir3 dir4

e * cannot be used to match the initial period, . , in a hidden filename
e But you can list all the hidden file in a directory using * ...
e if you put it after a period

$ 1s .*

.addressbook .bashrc .forward .pinerc
.bash_history .cshrc .login .plan
.bash_profile .emacs .msgsrc

The | and | Meta-characters

e The square brackets, | and |, are also meta-characters

e They work somewhat like ?

e They only match a single character in a pathname ...

 but the pathname character must match one of the characters ...
e within the brackets

e No matter how many characters are within the bracket ...

e the pattern can match only a single character

* You can use the bracket meta-characters with any program

* You can use a range to avoid listing all characters

e A range is specified by listing the first and last characters of a sequence ...
e separated by a dash, -

e The sequence is specified in alphabetical order

e The square brackets provide another shortcut

e If you insert an exclamation mark, ! , or a caret, * ...

e immediately after the opening bracket ...

e the shell will match any single character ...

e that is NOT included within the brackets

Built-ins

e Not all commands can be found on disk as executable files
e Some are actually written as part of the shell

e Such commands are called built-ins

e When you run a built-in ...

e the shell does not have to create a new process ...

e when you run these programs

 Instead the command runs in the same process as the shell
e This makes execution faster

Ways a Shell Can Be Created

e There are three ways a user can create a shell

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/class_notes_it244/28_class_notes_12-11_it244.html

6/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#built-in_command
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#process

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th
o Login shell
o Interactive non-login shell
o Non-interactive shell
e There are subtle differences between these three types of shells

Your Login Shell

e The login shell is the shell you get ...
e after your password has been accepted
e Each login session has one, and only one, login shell
* Your default shell version you run is set ...
e when your account is created
e The absolute pathname of this shell is contained in the variabale SHELL
e When your login shell starts up ...
e it runs the commands found in /etc/profile
e This is a file customized by the system administrator ...
e for all users
e You can create your own customizations in a startup file ...
* in you home directory
e The file must have one of these names
o .bash profile
o .bash login
o .profile
We will use .bash_profile

Interactive Non-login Shells

* You can run another shell from your login shell
e This sub-shell is called an interactive non-login shell

$ ps

PID TTY TIME CMD
12778 pts/1 00:00:00 bash
12969 pts/1 00:00:00 ps

$ bash

$ ps

PID TTY TIME CMD
12778 pts/1 00:00:00 bash
12970 pts/1 00:00:00 bash
12973 pts/1 00:00:00 ps

$

e Notice that the first entry for bash ...
* has the same process ID each time you run ps
e This is your login shell

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 7132

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#absolute_pathname
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#startup_file

12/14/2016

IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

The second bash process is the sub-shell

So your login shell is still running ...

but you are talking to a sub-shell ...

and the login shell is sleeping ...

waiting for the sub-shell to finish

the sub-shell 1s not a login shell

It is an interactive non-login shell

An interactive non-login shell is a shell that you create ...
without having to enter a password

Interactive non-login shells have their own startup file ...
called .bashrc ...

and it must be in your home directory

Non-interactive Shells

A shell scripts is a file containing Unix commands

When you run this file, all the commands in the file are executed
The program that understands these commands and runs them ...
is a shell

So your current shell has to create a sub-shell ...

to run the commands in the shell script

This sub-shell does not give you a prompt ...

so it is not an interactive shell

It is a non-interactive shell

There is no standard startup file for such a shell

Creating Startup Files

A startup file contains Unix commands ...

that are run just before you get a prompt

The startup file normally used by Bash is .bash_profile
This file must be placed in your home directory

Running a Startup File after a Change has been Made

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/class_notes_it244/28_class_notes_12-11_it244.html

Usually, when you change a startup file ...

you want the changes to take place immediately

But if you made a change to .bash profile ...

the changes won't take effect until the next time you login

Unix gives you a way to make the changes take effect immediately

You do this by running the source command
source .bash_profile

source runs a Unix script in the current shell ...
not a subshell

8/32

12/14/2016

IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

Commands that are Symbols

e Unix has some commands that are symbols rather than words
e I'll just mention them now and go into greater detail in future classes

0

Runs whatever commands are enclosed in the parentheses in a sub-shell

$0)

Command substitution:

rruns the commands enclosed in the paretheses in a subshell and returns
their value to the command line, replacing the dollar sign, the
parentheses and everything in them with this value

$((
)

Arithmetic expansion:
evaluates an arithmetic expression and returns its value at that place on
the command line

[

The test command:
used to evaluate a boolean expression in constructs like if clauses

File Descriptors

Every time the shell creates a process ...
it gives that process a connection to three "files"

o Standard input
o Standard output
o Standard error
e A program can open other files besides these
e File descriptors are data structures that Unix creates ...

 to handle access to files

e File descriptors are the abstract representation ...

 of the files that are connected to a process

e Each file descriptor is assigned a positive number ...

e starting with 0

e Think of a file descriptor as an integer that refers to a file
e Standard input, standard output and standard error

e cach have their own file descriptors

Name File Descriptor
Standard input 0
Standard output |
Standard error 2

e So while we think of standard input, standard output and standard error ...
e Unix thinks of the file descriptors 0, 1 and 2

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/class_notes_it244/28_class_notes_12-11_it244.html

9/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#process
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#file_descriptor
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#standard_input
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#standard_output
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#standard_error

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

Redirecting Standard Error

e Standard error is the "file" into which error messages are sent

e Redirecting standard error allows a program to separate its output stream ..
e from its error messages

e To redirect standard input we use the less than symbol, <

e followed by a pathname

e This construction is really a shorthand ...

 for a notation using file descriptors

e When you type

./repeat.sh < test.txt
Unix thinks of this as
./repeat.sh 06< test.txt

where 0 is the file descriptor for standard input
e Similarly, when we use output redirection

$ echo "Hello there" > hello.txt
Unix thinks of this as meaning
$ echo "Hello there" 1> hello.txt

e Again the file descriptor precedes the redirection symbol, >
e So how do we redirect standard error?
e We place a 2 in front of the greater than symbol

$ 1s xxxx
ls: cannot access xxxx: No such file or directory

$ 1s xxxx 2> error.txt

$ cat error.txt
ls: cannot access xxxx: No such file or directory

e Remember, 2 is the file descriptor for standard error

e Unix also gives you a way to redirect both standard output and standard input ...
* to the same file

* You can do this using the ampersand and greater than symbols together, &>

Shell Scripts

e A shell script can use any shell feature

e that is available at the command line
o Ambiguous file references using the metacharacters ?, * and | |
o Redirection

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 10/32

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th
o Pipes
e But not those features which are provided by #y
o Command line editing (arrow keys, control key combinations)
o Pathname completion (hit Tab to get more of a filename)
o The history mechanism (up arrow to recall previous command line)
e Unix also provides control structures
o If statements
o Loops

Making a Shell Script Executable

* You must have both read and execute permission ...

e to run a shell script

e Because the shell has to read the contents of the script ...

e you need read permission

* You need execute permission so the script can actually be run ...
e without calling bash

e Normally you would give a shell script file 755 permissions

e The owner can read, write and execute

e The group and everyone else can read and execute

Specifying Which Version of the Shell Will Run a Script

e When the shell runs a shell script ...

e it creates a new shell ...

e inside the process that will run the script

e Normally this sub-shell will be the same version of the shell ...
e as your login shell

e A script can use the hashbang line ...

e to specify which shell version to use ...

e when running a script

e The hashbang line must be the first line of the script

e The first two characters on the line

e must be a hash symbol, # ...

e followed by an exclamation mark, !

e After these two characters, you need to have the absolute pathname ...
e of the version of the shell which will run the script

Comments in Shell Scripts

e Scripts have to be read by the people
o Who write the program
o Who maintain the program
o Who use the program
e To make clear what is happening inside a program ...

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 11/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#command_line_editing
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#pathname_completion
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#read_permission
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#execute_permission
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#sub-shell
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#hashbang
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#absolute_pathname

12/14/2016
]
[]

IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

use comments
Anything following a hash mark, # , is a comment ...
except for the hashbang line

Separating and Grouping Commands

You can enter many commands on a single command line ...
if you separate them with a semi-colon, ;

$ echo Here are the contents of my home directory
Here are the contents of my home directory
error.txt foo 1it244 work

When you hit Enter each command is executed ...
in the order it was typed at the command line

| (pipe) and & (ampersand) as Command Separators

.
3

1s

.
3

The pipe, | , and ampersand, & , characters are also command separators

When we separate commands with the pipe character, | ...
each command takes its input from the previous command
We use an ampersand, & , after a command ...
to run that command in the background
When we do this, two things happen

o The command is disconnected from the keyboard

o The command will run at the same time

as the next command you enter at the terminal

But the ampersand is also a command separator
So we can use it to run many commands at the same time

Continuing a Command onto the Next Line

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/class_notes_it244/28_class_notes_12-11_it244.html

If you want to coninute a command line entry onto another line ..

You can typ a backslash, \
followed immediately by the Enter key

$ echo A man \

> A plan \

> A canal \

> Panama

A man A plan A canal Panama

After hitting \ and newline ...

the shell responds with the greater than symbol, >
This is the secondary prompt

The shell is telling you it expects more input

echo

12/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#background
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#secondary_prompt

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

Using Parentheses. () . to Run a Group of Commands in a Sub-shell

A group of commands within, a longer command line ...

e can be given a sub-shell of their own ...

in which to run

You can do this by putting the commands within parentheses

(cd ~/bar ; tar-xvf -)

The shell creates a sub-shell and runs the commands in that sub-shell

Shell Variables

e A variable is a place in memory with a name ...
e that holds a value
e To get the value of a variable ...
e put a dollar sign, $, in front of its name
e Some variables are set and maintained by the shell itself
e They are called keyword shell variables ...
e or just keyword variables
e Other variables are created by the user
e They are called are called user-created variables
e The environment in which a variable can be used is called the scope
e Shell variables have two scopes
o Local
o Global

Local Variables

e Local variables only exist in the shell in which they are defined
e To create a local variable, use the following format

VARIABLE_NAME=VALUE

e There are no spaces on either side of the equal sign ...

e when setting Bash variables

e Variables are local unless you explicitly make them global

e If the value assigned to a variable has spaces or tabs ...

e you must quote it

e If you run a shell script, the local variables will not be visible ...
e because the script is running in a sub-shell ...

e and the local variables are not defined there

Global Variables

e Global variables are defined in one shell ...

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 13/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#variable
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#keyword_shell_variable
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#scope
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#local_variable
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#global_variable

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

and keep their values in all sub-shells created by that shell
Global variables are defined in Bash using the export command
like .bash profile

The env command, when used without an argument ...

displays the values of all global variables

Kevword Shell Variables

Keyword shell variables have special meaning to the shell

They have short, mnemonic names

* By convention, the names of keyword variables are always capitalized
Most keyword variables can be changed by the user

This 1s normally done in the startup file .bash profile

Important Keyword Shell Variables

e There are a number of keyword variables that affect your Unix session
e Some of the more important are

Variable | Value

HOME | The absolute pathname of your home directory

The list of directories the shell will search when looking for the
PATH executable file associated with a command you entered at the
command line

SHELL || The absolute pathname of your default shell

Your command line prompt - what you see after entering each

=l command

The secondary prompt - what you see if you continue a

PS2 command to a second line

User-created Variables

e User-created variables are any variables you create
e By convention, the names of user-created variables are lower case
e User-created variables can be either local or global in scope

Quoting and the Evaluation of Variables

e Whenever the value of a variable contains spaces or tabs ...
e you must quote the string or escape the whitespace character
e There are three ways this

o Single quotes (' ")

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 14/32

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

o Double quotes (" ")
o Backslash (\)
e Everything surrounded by single quotes ...
e appears in the variable exactly as you entered it
e Double quotes also preserve spaces and tabs ...
* 1n the strings they contain
e Butyoucanusea $ in front of a variable name ...
 to get the value of a variable ...
e inside double quotes
* Quotes affect everything they enclose
e The backslash, \ , only effects the character immediately following it

Removing a Variable's Value

e There are two ways of removing the value of a variable
* You can use the unset command
e Or you can set the value of the variable to the empty string

Processes

e A process is a running program

e Unix is a multitasking operating system

e Many processes can run at the same time

e The shell runs in a process like any other program
e Every time you run a program ...

e aprocess is created ...

e except when you run a built-in

e When you run a shell script ...

e your current shell creates a sub-shell to run the script
e This sub-shell runs in a new process

e When each command in the script is run ...

e aprocess is created for that command

Process Structure

e Processes are created in a hierarchical fashion

e When the machine is started, there is only one process
e This process is called init

e init then creates other processes

e These new processes are child process of init

e These child processes can create other processes

e init has PID (Process ID) of 1

e init is the ancestor of every other processes ...

e that ever runs on the machine

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 15/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#process
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#built-in_command

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

Process Identification

Each process has a unique Process ID (PID) number
ps -f displays a full listing of information about each process running for the current
user

$ ps -f

uibD PID PPID C STIME TTY TIME CMD
it244gh 26374 26373 © 13:41 pts/5 00:00:00 -bash
it244gh 27891 26374 © 13:57 pts/5 00:00:00 ps -f

The UID column shows the user's Unix username

The PID column is the process ID of the process

The PPID column is the process ID of the parent process ...

the process that created this process

The CMD column gives the command line that started the process

Executing a Command

e When you run a command from the shell ...

e the shell asks the operating system to create a process ...
e to run the command

e Then it sleeps ...

e waiting for the child process to finish

e When the child process finishes ...

e it notifies its parent process of its success or failure ...

e by returning an exit status ...

e and then it dies

History

e The history mechanism maintains a list of the command lines you type
e These command line entries are called events

e To view the history list, use the history command

e If you run history without an argument ...

e it will display all the events in this history list

e By default, this list contains 500 values

e To restrict how many lines are displayed ...

e run history followed by a number

* You cannot have a - in front of the number ...

e as there must be when using /ead or tail

Using the History Mechanism

e If you know the event number of a previous command ...
e you can run it again by using an exclamation mark, ! ...

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 16/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#exit_status

12/14/2016

$ 1517
echo $PATH

IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

followed by the event number

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

The history mechanism prints out the old command line ...
before running it
There must be no space between the ! and the number ...

The Readline Library

e The readline library is a collection of procedures ...

e which let you edit the command line

e When you use Control key combinations on the command line ...

e you are using the readline library

e Any program running under Bash and written in C can use the readline library

e Here are some of the more useful commands for the emacs version of the readline

library

Command

Meaning

Control
A

Move to the beginning of the line

Control
E

Move to the end of the line

Control
U

Remove everything from the text entry point to the beginning
of the line

Control
K

Remove everything from the text entry point to the end of the
line

Move the text entry point one character to the left

Move the text entry point one character to the right

Recall the previous command line entry in the history list

T
!

Recall the following command line entry in the history list

Readline Completion

The readline library provides a completion mechanism

Type a few letters of something ...

and readline completion will try to supply the rest

There are three forms of completion provided by the readline library

o Pathname completion

o Command completion

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/class_notes_it244/28_class_notes_12-11_it244.html

17/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#pathname_completion
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#command_completion

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

o Variable completion

Pathname Completion

e The readline library provides pathname completion

* You begin typing a pathname, then hit Tab

e If there is only one pathname that matches ...

e the readline library will provide the the rest of the pathname
e If there is more than one possible completion ...

e the readline library will beep

e You can then enter more characters ..."

e before hitting Tab again ...

e or you can hit Tab right after the first beep ...

e and the readline library will give you a list of possible completions
e If the second Tab still gives you a beep ...

e there are no possible completions

Command Completion

e The readline library will complete the name of a command for you
e Begin typing a command ...

e then hit Tab ...

e and the readline library will try to supply the rest of the command
e If there is more than one possibility ...

e you will hear a beep

e Ifyou hit Tab a second time ...

e you will see a list of possible completions

Variable Completion

e When you type a dollar sign, $, followed immediately by some text ...
e you are entering a variable name

e The readline library knows this

e and will attempt to complete the name of the variable

e If there is more than one possibility, you will hear a beep

e If you then hit Tab another time

e you will see a list of possible completions

e If no list appears after the second Tab ...

e there are no possible variable name completions

Aliases

e An alias alias is a string ..
e that the shell replaces with some other string
e Usually, the value assigned to the alias ...

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 18/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#variable_completion
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#alias

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

 is a command or part of a command
e To define an alias, you use the alias command
e alias uses the following format in Bash

alias ALIAS_NAME=ALIAS_VALUE

e In Bash, there must be no spaces on either side of the equal sign, =
e If the value assigned to the alias has spaces, it must be quoted
e If you follow alias with the name of an alias, it will display the definition

$ alias 11
alias 11='1ls -1'

e In Bash, an alias cannot accept an argument

 Instead of allowing Bash to have aliases that accept an argument ...
e Bash has functions

e Aliases are not global

e They only work in the shell in which they are defined

Single Quotes Versus Double Quotes in Aliases

e Usually you want to use single quotes ...

e when defining alias

e If you use single quotes any variables in the alias ...
e will be evaluated when you use the alias

e If you use double quotes, any variable in the alias ...
e will be evaluated when it is defined

Functions

A function is a collection of commands that is given a name

e Functions can accept arguments from the command line

e Functions can be run anywhere you happen to be in the filesystem ...

e because function exist in memory ...

e not on the disk

e Functions, unlike aliases, can have arguments

e They use the same positional arguments that shell scripts use

e Functions differ from shell scripts in a number of ways
o They are stored in memory (RAM), rather than in a file on disk
o The shell preprocesses the function so it can execute more quickly
o The shell executes the function in it's own process

e Functions are local to the shell in which they are defined

e They do not work in subshells

e Functions definitions have the following form

FUNCTION _NAME ()
{

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 19/32

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

COMMANDS
}

e For clarity you can precede the function name ...
e with the keyword function
e The keyword function is optional

Shell Modification of the Command Line

e But before the shell executes the commands ...

e if first looks to see if it needs to make changes ...

e to the tokens on the command line

e The shell actually rewrites the command line before executing it

e It does this to implement features of the shell ...

* like command substitution and pathname expansion

e These are features that make the shell more powerful ...

 but they require the shell to change what you typed on the command line ...
* before executing it

e There are 10 different ways in which the shell can modify the command line

History Expansion

e History expansion occurs when you use the exclamation mark, ! ...
e to run again a previous command using the history mechanism

$ history 5
540 cat output.txt
541 echo "Go Red Sox" > output.txt
542 cat output.txt
543 echo foo
544 history 5

$ 1543

echo foo
foo

Alias Substitution

e After history expansion, bash performs alias substitution
The shell replaces the name of the alias ...

with the value of the alias

Aliases allow you to run complicated commands ...

by typing only a few characters

Brace Expansion

e Braces, {},allow you to specify several strings ...

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 20/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#token
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#command_substitution
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#pathname_expansion
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#alias

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

e all at once

e Braces can appear with strings of characters in front ...

e or behind

e The braces contain strings of characters separated by commas

e The shell expands a brace by creating many strings ...

 one for each string contained within the braces

e If I wanted to create 5 foo files I could use braces expansion as follows

$ touch foo{1,2,3,4,5}.txt

$ 1s
fool.txt foo2.txt foo3.txt food.txt foo5.txt

~ Expansion

e Whenever bash sees a tilde, ~ , by itself ...

e it substitutes the absolute pathname of your home directory

e Whenever bash sees a tilde, ~ , followed by a Unix user name,
e it substitutes the absolute pathname of the home directory ...

e of that account

Parameter and Variable Expansion

After tilde expansion, bash performs parameter and variable expansion

$ echo $SHELL
/bin/bash

bash notices the $ in front of a string ...

and looks to see if that string is the name of a variable

If the string is a variable, bash subsitutes the value of the variable ...
for the dollar sign and variable name

Arithmetic Expansion

e Unix treats everything on the command line as text

e except in a few situations

e Arithmetic expansion is where the text inside $(()) ...

e is treated as an arithmetic expression ...

e and the result of evaluating that expression replaces $(()) ...
e and everything inside it

Command Substitution

¢ In command substitution, a command is run in a sub-shell ...
e and the output of that command ...

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 21/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#arithmetic_expansion

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

e replaces the command itself
e Command substitution uses the following format

$ (COMMAND)

e Where COMMAND is any valid Unix command

Pathname Expansion

Pathname expansion is where you use meta-characters ...
to specify one or more pathnames

The metacharacters are used to create patterns ...

that are called ambiguous file references

The meta-characters are
o ?
o) *

o [1]

Shell Script Control Structures

e Control structures are Unix statements that change the order of execution ...
e of commands within a program or script
e There are two basic types of control structures

o Loops

o Conditionals

The if ... then ... Construct

e The first conditional is the if ... then statement ...
e which has the format

if COMMAND

then
COMMAND_1
COMMAND_2

fi

e COMMAND is any Unix command

e COMMAND 1, COMMAND 2, ... are a series of Unix commands
e The most common comman used with ifis test

e which must be followed by arguments that form a logical expression
e It is used to test the truth or falsity of a condition

e The keyword fi must close the conditional statement

e The statements between then and fi are executed ...

e depending on the status code ...

e given by the command that follows if’

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/class_notes_it244/28_class_notes_12-11_it244.html

22/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#meta-characters
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#ambiguous_file_reference

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

e If the command following if runs without error ...
e then it will return an exit status of 0 ...
e which the if... then statment treats as true

Lest

e The test command evaluates a logical expression ...
e given to it as an argument ...

e and returns a status code of 0 ...

« if the expression evaluates to true

e It returns a status code of 1 ...

e if the expression evaluates to false

 In an if statement, a status code of 0 means true ...
e and a status code greater than 0 means means false

The test operators

e test has a number of operators

» The operators test for different conditions

e When used with two arguments, the operators are placed between
e Some operators work only on numbers

Operator | Condition Tested
-eq Two numbers are equal
-ne Two numbers are not equal
-ge The first number is greater than, or equal to, the second
-gt The first number is greater than the second
-le The first number is less than, or equal to, the second
-1t The first number is less than the second

e test uses the different operators when comparing strings

Operator | Condition Tested

= When placed between strings, are the two strings the same

1= When placed between strings, are the two strings not the same

e Note that test uses symbols (=) when comparing strings
e But letters preceded by a dash (-eq) when comparing numbers
e There are two additional operators ...
e that fest uses when evaluating two expressions
e [t is placed between the two expressions
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 23/32

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

Operator | Condition Tested

-a Logical AND meaning both expressions must be true

-0 Logical OR meaning either of the two expressions must be true

e The exclamation mark, ! is a negation operator

e [t changes the value of the following logical expression
o It changes a false expression to true
o And a true expression to false

Using test in Scripts

e Bash provides a synonym for test ...

e a pair of square brackets, | |

e To test whether the value of the variable numberl
e is greater than the value of the variable number2
e you could write either

test $numberl -gt $number2
or
[$numberl -gt $number2]

e Whenever you use this construction
 there must be a space ...
e before and after each square bracket

The if ... then ... else ... Construct

e The another conditional is the if ... then ... else ... construct ...

e which has the following format

if COMMAND

then
COMMAND 1
COMMAND_2

else
COMMAND_A
COMMAND_B

fi

e [f COMMAND returns an exit status of O ...
e COMMAND 1, COMMAND 2, ... will be executed ...
e otherwise COMMAND A, COMMAND B, ..., will be run

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/class_notes_it244/28_class_notes_12-11_it244.html

24/32

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th
The if... then ... elif ... Construct

e The if... then ... elif ... construct allows you to create nested if statements

if COMMAND

then
COMMAND_1
COMMAND_2

elif ANOTHER_COMMAND
then
COMMAND_A
COMMAND_B

else
COMMAND N1
COMMAND_N2

fi

e elif stands for "else if"

* Notice that e/if must be followed by then

e The then must either be on the next line ...

e or the same line separated by a semi-colon, ;
e The else statement must be terminated by a fi
e elif only requires a single fi at the end

Debugging Scripts

e If you run a script using bash with the -x option ...

the shell will print each line of the script ...

just before it executes that line

Before bash prints a line from the script ...

it prints a plus sign, +

to let you know that the line is not output from the script

for... in ... Loops

e Bash provides many kinds of loops,
e but we'll start with the for ... in loop

for LOOP_VARIABLE in LIST_OF VALUES
do

COMMAND_1

COMMAND_2

done

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 25/32

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

The block of loop commands start after the do keyword ...
and end just before the done keyword
The do keyword is like the then keyword in an if statement
With a for ... in loop, Bash

o Assigns the first value in the LIST OF VALUES ...
to the variable specified by LOOP_VARIABLE
Executes the block of commands between do and done
Assigns the next value in the LIST OF VALUES
to the LOOP_VARIABLE
Executes the commands between do and the done again
And so on until each value in LIST OF VALUES has been used

(o]

(o]

(o]

(0]

for Loops

The for loop has a simpler structure than the for ... in ... loop

for LOOP_VARIABLE
do
COMMAND 1
COMMAND 2

done

e The difference between the two for loops ...

e 1s where they get the values for the loop variable

e The for ... in ... loop gets its values ...

e from the list that appears right after the in keyword

e These values are "hard coded" into the script

e They never change

e The simple for loop gets its values from the command line
e This for loop can have different values each time it is run

Three Expression for loops

e The first two for loops are totally different ...
e from the for loops in programming languages
e In programming languages, the for statement
o Initializes a loop variable
o Tests the current value of the loop variable ...
to determine whether the loop should continue
o Changes the loop variable at the end of the loop code
e The for statements in programming languages ...
e create the values used in the loop
e The two for loops we just have studied ...
e must be given the values used in the loop
e But there is a third form of for loop in Bash
e This form creates loop values the same way ...

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 26/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#hard_coded

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

e as the for loop in programming languages
e [t has the following form

for ((EXP1; EXP2; EXP3))
do

COMMAND 1

COMMAND 2

done

* Notice that the three expressions after the for keyword ...

e are inside double parentheses

e That means that anything inside them will be treated as numbers
e The first expression sets the inital value of the loop variable

e The second is a logical expression

e Aslong as it is true, the loop will continue

e The third expression changes the value of the loop variable ...

e after each pass through the loop

while 1.oops

e The first two for loops keep running ...

e until all values supplied to them ...

e have been used in the loop

e A while loop continue running ...

e as long as the command following the keyword while
e returns a status code of 0

e while loops have the form

while COMMAND
do
COMMAND 1
COMMAND_2

done

e Aslong as COMMAND is returns and exit status of O ...
e the code block between do and done will be executed

until Loops

e The until loop is similar the while loop

e Except that the until loop ends ...

e when the command following until returns an exit status of 0
e The while loop stops ...

e when the exit status is not 0

e The until loop has the form

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 27/32

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

until COMMAND
do
COMMAND 1
COMMAND 2

done

e In practice, the while loop is used much more often than the until loop
continue

e Normally, a loop will execute all the commands ...

e between do and dore ...

e in each pass through the loop

e But sometimes, you want to skip all or part ...

e of the commands in the loop block ...

e under specific conditions

 continue causes the shell to stop running the rest of the code ...
e between the do and done keywords

e The script then returns to the top of the loop ...

e and begins the next iteration

e continue does not cause the script to break out of the loop
e It merely stops the execution of the loop code ...

e for one iteration

break

e When you start a loop, you specify the conditions ...

e which will cause the loop to end

e With for ... in and simple for loops, the code leaves the loop ...
e when every value in the argument list has been used

e In the while, until and three expression for loops ...

e the code exits the loop when a logical condition is met
e But what if you encountered some unusual condition ...
e and wanted to break out of the loop entirely?

e To do this, you would have to use break

e When bash comes across the break keyword ...

e it jumps out of the loop

case Statement

Sometimes you want to write code that takes one of several different paths ...
depending on the value of a single variable

You could do this with an if'... elsif statement ...

but a case statement is easier to use ...

in this situation

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 28/32

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

e The case statement has the following format

case TEST_VARIABLE in
PATTERN_1)
COMMAND_1A
COMMAND_1B
COMMAND_1C

o
PATTERN_2)
COMMAND_2A
COMMAND 2B
COMMAND_2C

)
PATTERN_3)
COMMAND_3A
COMMAND_3B
COMMAND_3C

esac

When bash encounters a case statement it

o Finds the first pattern that matches the test variable

o Runs the statements for that pattern

o Leaves the case statement
Notice

o There is a right parenthesis,) , after each pattern

o The statements for each pattern end with two semi-colons, ;;

o esac marks the end of the case statement
e esac is case spelled backwards
This * will match anything that has not matched a previous pattern
When creating patterns you can use the meta-characters and the logical OR

* | Matches any string of characters

? | Matches any single character

Every character within the brackets can match a single character in

L] the test string

| |Logical OR separates alternative patterns

read Command

e The read command sets a variable ...

 to a value entered by the user at the terminal

e When bash comes across a read command it
file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/class_notes_it244/28_class_notes_12-11_it244.html

29/32

12/14/2016

IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

o Waits for the user to enter some text at the terminal
o Assigns the text entered by the user to the variable ...
whose name follows the read command

When read takes in a value from the terminal ...
it grabs everything the user types ...
until they hit Enter
I can use the -p option to read
to have read issue a prompt
By default, the read command does not allow you to edit text at the terminal ...
the way you can a the command line
But you can enable the readline library to make it possible to edit the line ..
if you use the -e option to read

Using Braces, { } . with Variables

If we try to concatenate the value of a variable with a string, we run into problems
$ dir=hw
$ echo The directory is $dirill
The directory is

bash did not see the variable dir next to the string "11"
Instead, it saw a new variable, dirl1, which was not defined
Since this variable was not defined ...

it has no value

To concatenate the value of a variable with a string ...

we need to use braces, { }

The braces surround the name of the variable

They set off the name of the variable from surrounding text

$ echo The directory is ${dir}11
The directory is hwill

The opening brace comes right after the dollar sign, $

Special Parameters

Special parameters are shell variables whose values ...

are automatically set by Bash

The parameters contain information about the current shell environment
They are very useful when writing shell scripts

Bash sets the values of these parameters ...

based on the state of current environment

? - The Exit Status

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 30/32

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/definitions_it244.html#shell_variable

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

e The ? special parameter returns the exit status of the last command

Positional Parameters

e Positional parameters give the value of the command line arguments ...
e to a shell script
e They can also be used with functions

- The Number of Command Line Arguments

e The # positional parameter contains the number of command line arguments
e This parameter allows you to check ...
e if your script has received all the arguments it needs

() - The Pathname of the Script

The 0 positional parameter contains the full pathname used to call the script
You should use this parameter when creating a usage message

But you should use it with the basename command ...

to remove the path part of the pathname

1 -n-The Command Line Arguments

to a script ...

or to a function

If there is no corresponding command line argument ...
the parameter will have no value

shift: Promotes Command Line Arguments

e The shift built-in promotes command line arguments
e This means that the value of positional parameter 2 ...
e is assigned to positional parameter 1 ...

e and the value of positional parameter 3 ...

e is assigned to positional parameter 2 ...

e and so on

e After shift is called, all arguments move up one position ...
e and the first argument value is lost

e If shift is called with a numeric argument ...

e all arguments are moved up that number of positions

e The first two command line arguments are lost ...

e after shift is called ...

e and every positional parameter moves up 2 positions

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244_glenn/class_notes_it244/28_class_notes_12-11_it244.html

The numbered positional parameters are used to give command line arguments ...

31/32

12/14/2016 IT 244: Introduction to Linux/Unix - Class 28, Thursday, December 11th

e shift comes in handy when you want to write a script ...
e that loops over all command line arguments
* shift keeps promoting arguments until there are no more left

file:///E:/FrodoHackins/Documents/umbcs_materials/_teaching/it244/it244 _glenn/class_notes_it244/28 class_notes_12-11_it244.html 32/32

