
Perl: Scalars

 What is a Scalar?

 Types of Scalars:

 Numbers

 Integers (...-2, -1, 0, 1, 2,...)

 Floating-point (i.e., decimals: -1.4, 0.8, 3.7)

 Strings

 Logical or Boolean

 Automatic conversion between types

 Experiment with Perl to see what happens

 Decimal

$num = 345;

 Binary

$num = 0b101011001;

 Octal

$num = 0531;

 Hexadecimal

$num = 0x159;

 See also: goodnums.pl and badnums.pl

This is how we can

express integer

literals in bases

other than 10

 What is a constant?

 Why do we use a constant?

 Examples of constants:

 pi : 3.14159265359...

 e : 2.71828182845...

 # of states in USA: 50

 Write a simple program to print out a few constants.

 How is the textbook using the term "constant", versus the use in

some other languages?

 Double-quoted vs. Single-quoted strings

 Double-quoted strings can be interpolated, where string is

subject to processing first:

 Variables: "My name is $name"

 Escaped chars: "This is a line.\n"

 Single-quoted strings are not interpolated, so variables, escaped

characters, etc. are not recognized.

 Alternate quotes:

 'Hello' q/Hello/

 "Hello" qq/Hello/

 What is a variable?

 How do we name variables?

 Starts with $

 Next either letter or _

 Rest can be letters or numbers

 You should develop a pattern so you are consistent

within your programs.

 Make the name mean something!!!

 Another way to write a string

 Used to input a large amount of text

 Starts with a << followed by a label

print << "EOF";

This is a here document

It will print exactly as shown

It is easier than quoting

EOF

Or... $data = << "EOF";

...

 Whether you
surround EOF with

single or double

quotes determines

whether

interpolation takes

place...

Addition

Subtraction

Multiplication

 In arithmetic, Perl

will automatically

convert strings to

numbers

 Note: Take care to remember order of operations...

Division

Exponentiation

Modulo (Remainder)

x Repetition. Concatenation

ord() ASCII Value of a character

 A number can be treated either as a number or as a string.

 In other programming languages, those would simply be separate

data types – "string", "integer", "float", etc.

 In Perl, however, they are all scalar

 Perl uses the context to decide

whether the value is a number

or a string

perl> print 4 + 5 ;

9

perl> print 4 . 5 ;

45

 In Perl, a number of values may be considered "false": 0 , "0" ,

"" (empty string), etc.

 We will often use 1 and 0 for true and false, respectively

 Boolean operators:

 && And

 || Or

 ! Not

 If you try to print a boolean value, the resulting output may
appear rather odd...

 == Equality

 != Inequality

 < Less Than

 <= Less Than or Equal To

 > Greater Than

 >= Greater Than or Equal To

 <=> Comparison ("spaceship",

"shuttle")

 Left < right : returns -1

 Equal : returns 0

 Left > right : returns 1

 String comparisons are lexicographic, based on the characters'
numeric values – see http://www.asciitable.com

 lt Less Than

 gt Greater Than

 eq Equal To

 cmp Comparison

 Left comes before right : returns -1

 Same string : returns 0

 Left comes after right : returns 1

 le Less Than or Equal To

 ge Greater Than or Equal To

 ne Not Equal To

 ++$a Pre-increment

 --$b Pre-decrement

 Both will increase (or decrease) a numerical variable by one

 However, in many contexts, the pre/post difference is crucial!

 It concerns two separate actions:

 Getting, or reading, a variable's value (for use in an expression)

 Setting , or writing, the value (to a number 1 less or 1 greater)

 Pre and post concern the order in which these things happen...

 $a++ Post-increment

 $b-- Post-decrement

 Scoping: Blocks of code limit the range of a variable's definition

$numDef=25;

print $numDef;

{ my $numDef=1;

print $numDef;}

 print $numDef;

 The my keyword: Makes $numDef lexical – local to the block!

 Changes in the block will not affect the identically-named

variable outside the block

 The strict pragma will require all variables declared with my or

another keyword

 Use the file handle <STDIN>

 Try this out

print “Input something:”;

my $newInput=<STDIN>;

print $newInput;

Or... <> (without STDIN, but it behaves differently...)

 chomp ($newInput); - remove newline from end

 chop ($newInput); - remove last char from end

