1T441

NETWORK SERVICES ADMINISTRATION

Perl: Scalars

Scalars

What is a Scalar?
Types of Scalars:

Numbers
Integers (...-2,-1,0, 1, 2,..)
Floating-point (i.e., decimals: -1.4, 0.8, 3.7)
Strings
Logical or Boolean
Automatic conversion between types
Experiment with Perl to see what happens

Numbering Systems

Decimal
$num = 345; This is how we can
Binary express integer
Snum = 0b101011001 ; literals in bases
Octal other than 10
Snum = @531; <
Hexadecimal

$num = @x159;

See also: goodnums .pl and badnums.pl

Constant (Literal)

What is a constant?
Why do we use a constant?

Examples of constants:
pi : 3.14159265359...
e : 2.71828182845...
of states in USA: 50

Write a simple program to print out a few constants.

How is the textbook using the term "constant”, versus the use Iin
some other languages?

Quoting Strings

Double-quoted vs. Single-quoted strings

Double-quoted strings can be interpolated, where string is
subject to processing first:

Variables: "My name is $name"

Escaped chars: "This is a line.\n"
Single-quoted strings are notinterpolated, so variables, escaped
characters, etc. are not recognized.

Alternate quotes:
'Hello' > gq/Hello/
"Hello"™ -> gq/Hellol/

Variables

What is a variable?

How do we name variables?
Starts with §

Next either /etteror _
Rest can be /etters or numbers

You should develop a pattern so you are consistent
within your programs.

Make the name mean something!!!

Here Document

Another way to write a string

Used to input a large amount of text

Starts with a << followed by a label
print << "EOF";

This 1s a here document

It will print exactly as shown
It 1s easier than quoting

Or... Sdata = << "EOF";

EOF

Here Document

Whether you

surround EOF with - ; _

Num 1 1s

single or double 2 s Num 1 s

3 1s 2 is

L

guotes determines 3 s
whether
/nterpolation takes
place...

/multiline.p] $./multiline.p]

Num 1 is $num_1
Num 2 1s $num_2

-

Num 3 is $num_3

Numeric Operators

+ Addition / Division
= Subtraction ** Exponentiation
* Multiplication % Modulo (Remainder)

In arithmetic, Perl
will automatically
convert strings to print "2.5"
numbers—>

pr.,_int 172.511 R IR :

Note: Take care to remember order of operations...

String Operators

. Concatenation
ord() ASCII Value of a character

X Repetition

A number can be treated either as a number or as a string.

In other programming languages, those would simply be separate
data types — "string", "integer"”, "float", etc.

In Perl, however, they are all scalar _
perl> print 4 + 5

Perl uses the contextto decide 9
whether the value is a number
or a string

perl> print 4 . 5
45

.
14

.
14

Booleans in Perl

In Perl, a number of values may be considered "false": @, "@" ,
“* (empty string), etc.

We will often use gl and E for true and false, respectively
Boolean operators:
&& And
Il Or
I Not

If you try to print a boolean value, the resulting output may
appear rather odd...

A

Numerical Comparisions

Equality &> Comparison ("spaceship”,
Left < right : returns

Equal : returns E

Left > right : returns

Less Than
Less Than or Equal To

Greater Than
Greater Than or Equal To

String Comparisions

String comparisons are lexicographic, based on the characters'
numeric values — see http: //www.asciitable.com

It Less Than le Less Than or Equal To
gt GreaterThan [ge = Greater Than or Equal To
eq EqualTo ne ANotEqual To

cmp Comparison
Left comes beforeright : returns -1
Same string : returns @
Left comes afterright : returns 1

Increment/Decrement Expressions

++%$a Pre-increment $a++ Post-increment
--$b Pre-decrement $b-- Post-decrement

Both will increase (or decrease) a numerical variable by one

However, in many contexts, the pre/post difference is crucial!

[t concerns two separate actions:
Getting, or reading, a variable's value (for use in an expression)
Setting , or writing, the value (to a number 1 /essor 1 greater)

Pre and post concern the order in which these things happen...

Variable Scoping in Perl

Scoping: Blocks of code limit the range of a variable's definition
SnumDef=25;

print SnumDef;
{ my SnumDef=1;
p SnumDef; }
print S$numDef;

The “M keyword: Makes $numbDef /exical/— |ocal to the block!

Changes in the block will not affect the identically-named
variable outside the block

The strict pragma will require all variables declared with my or
another keyword

Getting Data into the Program

Use the file handle <STDINS

Try this out

print “Input something:”;
my SnewInput=<STDIN>;
print $newInput;

Or.. . (without STDIN, but it behaves differently...)

chomp ($newInput); - remove newline from end
_ - remove last char from end

