
Control Statements

• Some Useful Things

o Comments

o Leaving programs

o Increment/decrement

o Boolean operators

• Domains of Programming

Languages

• Control Flow

• Branching

• Repetition

o Indefinite

o Definite

• Breaking Loops

Program Comments

• Start a comment with a #

• Write many comments in your program

• Write a header block in EVERY program

#

Author: Chris Kelly

Name: first_name.pl

Date: 11 Sept 2017

Purpose: To solve a problem

#

Ways to get out of a program

• exit (0);

o When a script finishes, it can return a numeric exit code to the caller

▪ An exit code of zero indicates all is well/successful

▪ A non-zero exit code can identify error conditions

o In Unix, upon the scripts completion, the exit code will be contained in

the shell variable $?

• die ($string);

o If the problem is more severe, we can use the die function

o Ends the program with a non-zero exit status

Ways to get out of a program

• die ($string);

o String parameter is printed to standard error, along with other info

▪ Script file name

▪ Line number

▪ Error location

Increment/Decrement

• A very helpful construct is the increment/decrement statement

• $i++ is equivalent to $i = $i+1

$j = $i++

$j = ++$i

$j = $i--

$j = --$i

• What differentiates pre-increment and pre-decrement from post?

Arithmetic Comparisons

• $x > $y

• $x < $y

• $x >= $y

• $x <= $y

• $x == $y

• $x != $y

String Comparisions

• $x gt $y

• $x lt $y

• $x ge $y

• $x le $y

• $x eq $y

• $x ne $y

Logical Operators

• $x and &y

• $x && $y

• $x or $y

• $x || $y

• not $x

• !$x

Four Domains of Programming

Languages

• Input / Output

o Keyboard

o Terminal screen

o Files

o Web sockets

• Variables / Information Storage

o Declare variable

o Assign variable

o Read variable

• Decision / Control Structures

o Sequence

o Branching

o Repetition

• Data Manipulations /

Calculations

o Arithmetic

o String concatenation

o Boolean logic

Control Flow Constructs

• What is a control statement?

• Types of control statements:

o Branching: if

o Repetition: while and for

If Statements

• We use branching to tell the program to do one thing or another,

depending on some condition.

o The condition is boolean, something that can be interpreted as true or

false

o Usually, the condition will be based on the present state of the program

and its data

• if

o if (condition) { action }

o Either action is taken or it isn’t

If Statements

• if else

if (condition) { action1 }

else { action2 }

o Take either action1 or action2

• if elsif else

if (condition) { action1 }

elsif (another condition) { action2 }

… # more elsifs

else { default }

o Take action1, action2, action3, ... , or default

If Statements

• unless statement

unless (condition) {action};

o Functionally equivalent to:

if (! condition) { action }

• Reversed order syntax

print "Hello Al\n" if($inputName = "Al");

die "Can’t divide by zero\n:" if ($num4 == 0);

• Both of these may be useful for making code sound more similar

to human language.

While Statement

• One type of repetition we can use in a program is an indefinite

loop.

o Here, the idea is that the repeated execution of loop code eventually

causes the loop to end

o For this, we use while loops

• while (condition) { action }

• Example:
$i=1;

while ($i<=5) {

print $i, "\n";

$i++;

}

While Statement

• until loops

o Same form but opposite action of the while loop

o Functionally equivalent to:

while (! condition) { action }

An interesting variable

• $_ is the default variable for many functions

while ($line = <STDIN>) {

print $line;

…

}

while (<STDIN>) {

print $_;

…

}

Another Form of Loops

do { action } while (condition);

do { action } until (condition);

• In other words:

o Carry out action

o Examine condition

o Decide whether or not to repeat action

• Here, action is always executed at least once!

For statement

• In contrast, for some kinds of repetition, the program can

determine the number of repetitions before the loop begins. This

could be based on:

o A predetermined number

o All the items within a sequence

• For such definite repetition, we use for loops

for (init_exp ; test_exp; step_exp) { action }

• Example:
for ($i=1; $i<5; $i++) { print $i, “\n” ; }

Foreach loop

foreach $number (1..10) {

print "The number is: $number \n";

}

• Here, we are basically saying, "Execute this block of code for

each item in the sequence."

Modifying Loop Behavior

• There are three ways to modify the execution of the loop:

o last; - end the loop

o next; - skip to the next iteration

o redo; - restart the loop

• You can use these with statement labels

o Labels a location in the program

o Best to use all uppercase letters; label should also be meaningful

OUTER: while(…) {

…

}

Modifying Loop Behavior - Example

OUTER: while(some condition) {

some code...

INNER: foreach $num (1..20) {

if (some other condition){

last INNER;

}

else { next OUTER; }

}

#some more code

}

Realistically, you probably will

not use these kinds of tricks

often, but it is good to know that

they are out there. This way, you

are aware of your options for

directing the flow of control in

your scripts/programs.

