Control Statements

- Some Useful Things

o Comments

o Leaving programs

o Increment/decrement

o Boolean operators

- Domains of Programming
Languages

. Control Flow

- Branching
- Repetition

o Indefinite
o Definite

- Breaking Loops

Program Comments

- Start a comment with a #
- Write many comments in your program
- Write a header block in EVERY program

Author: Chris Kelly

Name: first name.pl

Date: 11 Sept 2017

Purpose: To solve a problem

H H H= H= = =

Ways to get out of a program

-exit (0);

o When a script finishes, It can return a numeric exit code to the caller
= An exit code of zero indicates all is well/successful
= A non-zero exit code can identify error conditions

o In Unix, upon the scripts completion, the exit code will be contained In
the shell variable $2

-die ($string);
o If the problem iIs more severe, we can use the die function
o Ends the program with a non-zero exit status

Ways to get out of a program

-die ($string);

o String parameter Is printed to standard error, along with other info
= Script file name
= Line number
= Error location

Increment/Decrement

- Avery helpful construct is the increment/decrement statement
- Si++isequivalentto $i = $i+l

$5 = $i++
§9 = ++8i
$j = $i--
$) = —-%i

- What differentiates pre-increment and pre-decrement from post?

Arithmetic Comparisons

1t Sy
ge Sy
le Sy
eq Sy
ne Sy

String Comparisions

- Sx and &y
- Sx && Sy

« SX or Sy
- $x || Sy

- not S$x

- 1Sx

Logical Operators

Four Domains of Programming

Languages
- Input / Output - Decision / Control Structures
o Keyboard o Sequence
o Terminal screen o Branching
o Files o Repetition
o Web sockets - Data Manipulations /
- Variables / Information Storage Calculations
o Declare variable o Arithmetic
o Assign variable o String concatenation

o Read variable o Boolean logic

Control Flow Constructs

- What is a control statement?

- Types of control statements:
o Branching: i f
o Repetition: while and for

If Statements

- We use branching to tell the program to do one thing or another,
depending on some condition.

o The condition is boolean, something that can be interpreted as true or
false

o Usually, the condition will be based on the present state of the program
and Its data

. |If
olf (condition) { action }

o Elther action is taken or it isn’t

If Statements

- If else
if (condition) { actionl }
else { action2 }
o Take either actionl or action2

. If elsif else
if (condition) { actionl }

elsif (another condition) { action2 }

.. # more elsifs

else { default }

o Take actionl, action2, action3, ..., or default

If Statements

. unless statement
unless (condition) {action};

o Functionally equivalent to:
if (! condition) { action }
- Reversed order syntax
print "Hello Al\n" if ($inputName = "Al");
die "Can’t divide by zero\n:" if (Snumd4 == 0);
- Both of these may be useful for making code sound more similar
to human language.

While Statement

- One type of repetition we can use in a program is an indefinite
loop.
o Here, the idea Is that the repeated execution of loop code eventually
causes the loop to end
o For this, we use while loops

- while (condition) { action }
- Example:
$i=1;
while ($i<=5) {
print $i, "\n";
Si++;

While Statement

- until loops
o Same form but opposite action of the while loop

o Functionally equivalent to:
while (! condition) { action }

An interesting variable

- $ 1s the default variable for many functions

while ($line = <STDIN>) {
print $line;
}

while (<STDIN>) {

print $;

}

Another Form of Loops

do { action } while (condition);
do { action } until (condition);
- In other words:

o Carry out action

o Examine condition
o Decide whether or not to repeat action

- Here, action Is always executed at least once!

For statement

- In contrast, for some kinds of repetition, the program can
determine the number of repetitions before the loop begins. This

could be based on:
o A predetermined number
o All the items within a sequence

- For such definite repetition, we use £fox loops

Wi nit_explifitest expliistep expl NI
- Example:

for (EEEEl; EERSE;) { print $i, “\n” ; }

Foreach loop

foreach Snumber (1..10) {
print "The number is: $number \n";
}

- Here, we are basically saying, "Execute this block of code for
each item In the sequence."

Modifying Loop Behavior

- There are three ways to modify the execution of the loop:
o last; -endthe loop

o next; - sKip to the next iteration

o redo; - restartthe loop

- You can use these with statement labels
o Labels a location in the program

o Best to use all uppercase letters; label should also be meaningful
OUTER: while(..) {

Modifying Loop Behavior - Example

OUTER: while(some condition) {
some code...
INNER: foreach S$num (1..20) {
1f (some other condition) {

INNER;

} Realistically, you probably will

not use these kinds of tricks
else { IO OUTER;] often, but it is good to know that
} they are out there. This way, you
#some more code are aware of your options for
directing the flow of control in
your scripts/programs.

