
IT441

Network Services Administration

Perl: File Handles

Comment Blocks

• Perl normally treats lines beginning with a # as a comment.

• Get in the habit of including comments with your code.

• Put a comment block at the beginning of your code which

includes...

o your name,

o the name of the module,

o date written, and

o the purpose of the code.

Alternative String Delimiters

q// : single quoted string

qq// : double quoted string

• In qq// , the // can be replaced with any other non-

alphanumeric character provided you use the same

character on both ends of the string

• More generally, delimiters – the symbols marking

boundaries to parts of something -- can be tricky.

• Make sure you are using them correctly!

Operators on Strings and Numbers

$a = "123"

$b = "456"

• What do we get if we write this line of code?

print $a + $b;

• How about this line of code?

print $a . $b;

Math Operators

** Exponentiation

- Unitary Negation

* Multiplication

/ Division

% Modulo (Remainder)

+ Addition

- Subtraction

Example: $x += y

• These can be combined

with = , creating a special

assignment operator to

o Perform the operation with

▪ the current value of the left-

hand side variable

▪ and the expression on the

right-hand side

o and store the result back into

the variable

$x = $x + y

What is an Algorithm

• In mathematics and computer science, an algorithm is

o an effective method

▪ expressed as a finite list

➢of well-defined instructions

❖for calculating a function.

• Algorithms are used for calculation, data processing, and

automated reasoning.

• In simple words, an algorithm is a step-by-step procedure
for calculations.

File Handles

• To use a file, we need to attach a filehandle to it.

• More generally, we can think of a handle as a way for a

program to access some external resource

• It mediates/manages interactions between the program and

the resource.

• Thus, a filehandle allows us to read from and write to files.

Examples include:

o File descriptors in Linux, such as 0 (standard input), 1 (standard

output), and 2 (standard error)

o In object-oriented programming, a "file object"

File Handles

• In Perl, it will be a variable, which we set up using the open
statement with three parameters:

o The filehandle, such as OUT1

o The mode: read ('<'), write ('>'), or append ('>>')

o The file path: either relative (to cwd) or absolute

• A simple example:

open (OUT1 , '>' , 'test_out.txt');

• If we open it, we want to close it after we are done:

close (OUT1);

• By convention, a filehandle is coded in ALL CAPS

When File Handles Fail...

• We want to know for sure that we were successful opening

the file, so we include a test:

open (OUT1 , '>' , 'test_out.txt') or die $!;

• $! is a special variable in Perl. It would be an error

message, from the system (e.g., if the opening failed).

• What are some reasons we might fail to open a file, in one
mode or another?

• See goodopen.pl and badopen.pl in the textbook

• Also, review the die function and its usage

Using a filehandle

• When we use the print function, we are always printing to a

handle, such as standard output:

o Therefore, print "Hello World!\n";

o is really print STDOUT "Hello World!\n";

• We could, in fact, print to some other destination

print OUT1 "Hello World!\n";

• To read from a filehandle, you wrap it in angle brackets.

chomp ($in = <IN1>);

I/O Redirectors and Perl File-
Opening Modes

• Remember what the redirectors do:

> : redirect output to ... , which overwrites the file, if it exists

>> : append output to ... or create the file, if it doesn't exist

< : take input from ...

• You will also use these (in string form, surrounded by

quotes) to indicate mode (read, write, or append) when

opening a file

A Practical Example

#!/usr/bin/perl

open (IN1, '<', 'input.txt') or die $!;

open (OUT1, '>>', 'out_skip.txt') or die $!;

while(<IN1>){ # loops until end-of-file

chomp $_;

print OUT1 "Hello $_!\n\n";

}

close (IN1);

close (OUT1);

The Diamond Operator: <>

• We have used the (empty) diamond operator <> before, in

the context of getting user input.

• For standard input specifically, we would use <STDIN>

• However, <> does more...

• In Perl, there is a special array called @ARGV which is

intended to hold command line arguments to a script.

o If you provide no arguments, @ARGV is empty

o If, however, you include arguments, they are stored in @ARGV as

whitespace-delimited tokens.

The Diamond Operator: <>

• If @ARGV is non-empty, each token in the array will be

treated as a filename, then <> will read in

o the first line of the first file, until

o the last line of the last file

• If @ARGV is empty (no command line arguments), then <> will

read in from standard input, line-by-line, until it gets the

eof signal – Ctrl+D

• Depending on how and when you use <> , it will behave

differently...

Using Pipes in Perl

• You can make Linux-style pipes work with a Perl program.

o Execute another script, and pipe its contents into an input file

handle for this one

open ('PROG' , '-|' , './other_script.pl file.txt')

This is the same as :

./other_script.pl file.txt | ./this_script.pl

o Start up another script, and send output from this one into the

other, as the other's input.

open ('PROG' , '|-' , './other_script.pl file.txt')

This is the same as :

./this_script.pl | ./other_script.pl file.txt

File Tests as Conditions

• Files may differ in size, type, permissions, etc.

• To that end, you will often want to check the file before

deciding how to proceed. This code checks to see if

student has a .forward file...

if (-e "/home/$student_id/.forward"){

open ('IN' , '<' , "home/$student_id/.forward") ;

$email = <IN>;

close (IN);

}

else { $email = "$student_id@cs.umb.edu" ; }

File Tests as Conditions

• From the textbook:

