
IT441

Network Services Administration

Data Structures:

Lists

Comment Blocks

• Perl normally treats lines beginning with a # as a comment.

• Get in the habit of including comments with your code.

• Put a comment block at the beginning of your code which

includes

o your name

o the name of the module

o date written

o and the purpose of the code.

Comment
Blocks

#!/usr/bin/perl -w

#

#Module Name: helloWorld.pl

#

#Written by Alfred J Bird, Ph.D., NBCT

#Date Written – 21 September 2011

#Purpose: To print out the string "Hello

world!"

#

#Date Modified – 25 September, 2011

#Purpose of modification: To fix spelling

errors.

#Modified by: Al Bird

#

print "Hello world! \n";

Data Types

• Remember there are three basic data types in Perl

o Numeric

o String

o Boolean (Logical)

• These, of course, fall under the heading of scalars

• I differentiate between data types and data structures. Not

every author or teacher does. Some books use the terms

interchangeably so watch out!

Data Structures

• There are three types of structures in Perl for organizing

program data

o Scalars - A single data value (number, string, etc.)

o Arrays - An ordered sequence of data values

o Hashes - A set of paired data values, where one (the "key") is used

to look up the other (the "value")

• Each structure has it own syntax for variable names...

$scalar @array %hash

• This syntax can be tricky, if you're not careful...

Scalars

• We talked about scalars in the past.

• Scalars are a data type that contain one element.

o It can be a number such as 1

o It can be a string such as "Hello World! \n"

o It can be a boolean value of true or false

• It can be stored in a variable with a name such as $i

• It is the most primitive of the data structures.

Lists

• Some authors, teachers, and CS pros do not consider a list

a data structure, but some do so be careful .

• A list is defined as an ordered set of scalar values.

• Lists are delimited by parentheses such as

()

(1)

("a")

(1, 2, 3, 4, 5)

("a", "b", "c", "d", "e")

('e', 'd', 'c', 'b', 'a')

• Remember that a list is ordered!

Using a List

• You have already been using lists without knowing it.

• When you type the following statement

print ("Hello ", "world", "! ", "\n");

You are passing a list to the print function.

• I have just used a new Perl term, function.

• A function is a subroutine (a free standing piece of code) or

an operator that returns a value and/or does something

Another Way to Create a List

• Given a list we created this way:
('Hello', 'world.', 'I', 'am', Al')

• We can use another method to create it:
qw/Hello world I am Al/ .

• As with earlier, similar operators -- we can use any
nonalphanumeric character as a separator:

qw#Hello world I am Al# .

qw&Hello world I am Al& .

qw{Hello world I am Al} .

A Third Way to Create a List

• We can create a list by using a range.

o This list (1, 2, 3, 4, 5, 6)

o Is the same as this list (1..6)

• But this will not work:

o (6..1) does not give (6, 5, 4, 3, 2, 1)

o because the left hand side must be less than the rhs

• To get the list (6, 5, 4, 3, 2, 1) using a range, we need

to type reverse (1..6)

• Try these using a print statement!

Printing a List

• Remember that a list is ordered!

o The elements have a location that can be counted

▪ The counting starts with 0 (the 1st element is number 0)

• How do we print a list?

• What is the result of the following statements?
print (qw/a b c d e f g/);

• How about this statement?
print qw/a b c d e f g/;

• First, predict the results, and then try them and see what

happens.

Printing Individual List Elements

• We can refer to individual elements in a list by using a
number in square brackets [] after the list.

• What is the result of the following statement?
print ((qw/a b c d e f g/)[2]);

• How about this statement:
print (('a', 'b', 'c', 'd', 'e', 'f', 'g') [3]);

• First, predict the results, and then try them and see what

happens.

• You can put a scalar variable into the brackets
$i = 3;

print ((qw/a b c d e f g/)[$i]);

A List Slice

• We can refer to a range inside the braces.

• What do we get when we run the following statement:

print ((qw/a b c d e f g/)[2..4]);

• First, predict the results, and then run the statement.

• What about this statement?

print ((qw/a b c d e f g/)[3..1]);

Extras

• What do you think will happen if you enter the following

code?

print (('z', 'x', 'c', 'v', 'b', 'n', 'm')[-1]);

• First, make a prediction, and then run the code.

• How about this code?

$i=2.9;

print (('z', 'x', 'c', 'v', 'b', 'n', 'm')[$i]);

• First, make a prediction, and then run the code.

Another Data Structure

• The problem with a list is that it cannot be named!

• You cannot, for example, do the following:

$the_data = qw/a b c d e f g/;

• We need to retype the list every time we want to use it.

• To solve this difficulty we have another data structure called

an array

o We can give an array a name that starts with a @
o This means that we can reference it and perform more operations

on it...

Arrays

• An array is a data structure that has the characteristics of a

list but can be named!

• To store a scalar literal into a variable we use an assignment
statement

$a = 1;

• To store a list into an array, we do the same thing:

@a = (1,2,3,4,5);

@l = ('a', 'b', 'c', 'd', 'e', 'f');

@m = qw<az x c v b n m>;

