
IT441

Network Services Administration

Data Structures:
Arrays

Data Types

• Remember there are three basic data types in Perl

o Numeric

o String

o Boolean (Logical)

• I differentiate between data types and data structures.
Not every author or teacher does. Some books use the
terms interchangeably, so watch out!

Data Structures

• In PERL there are three types of data structures:

o Scalars

▪ Single values: Number, string, Boolean

▪ The most basic structure

o Arrays - Sequences of values

o Hashes - Key-value pairs

• Each structure has it own naming syntax.

$scalar @array %hash

Lists

• We talked about lists already.

• A list is defined as an ordered set of scalar values.

• Lists are delimited by parentheses such as
()

(1)

("a")

(1, 2, 3, 4, 5)

("a", "b", "c", "d", "e")

('e', 'd', 'c', 'b', 'a')

• Remember that a list is ordered : 0, 1, 2, 3,...

Another Data Structure

• As we mentioned, a list cannot be named with a variable

• However, we have a data structure called an array

o An array, too, is an ordered sequence of values

o We can give an array a name that starts with a @

• To make and name, an array we assign it to a variable:
@a = (1,2,3,4,5);

@l = ('a', 'b', 'c', 'd', 'e', 'f');

@m = qw<az x c v b n m>;

Accessing Individual Elements

• How do we access an individual element in an array?

o Just like we did in a list.

• Using a list if we code:
print (('now', 'is', 'the', 'time')[2]);

o It will print out the

• Likewise, if we define an array:
@s = ('now', 'is', 'the', 'time');

print @s[2];

o The print statement will also print out the

Scalar vs. List Context

• What about print $s[2]; ? What will it print out?

• Why does the statement print $s[2]; work?

o Use the prefix for what you want -- not what you have.

o This is referred to as list vs. scalar context, and it may well become
a very important concept later...

• When using an input filehandle in an assignment statement,
the type of variable will make a difference:

$scalar_var = <IN1> ; # Gets next line as scalar value

@array_var = <IN1> ; # Gets all (remaining) lines and

puts them in an array

Array Functions
• How do we add data to an array?

@array = (@array, $scalar); #is one way!

• But there is another way!!
push @array, $scalar; #will do the same thing!

• push will append the value in $scalar to the top of @array

o We say the end of the array (i.e., highest index) is the "top"

o And the front (i.e., lowest index) is the "bottom"

• Likewise, pop will take the last/top value in an array and do

something with it.
$scalar = pop @array

Array Functions

• push() and pop() act on the top of an array (the highest

indexed end)

• shift() and unshift() act on the bottom of an array and

perform the same function.

• We already know what reverse() does...right?
o Note that reverse does not change the original array

o Rather, it is more like create a new array, with the same values,
only in the reverse order.

o You can name the reversed array: @rev_arr = reverse(@arr);

Array Functions

• You can use push , pop , shift , and unshift in order to
implement stacking and queuing logic

o Stack items are accessed LIFO (last in, first out)
▪ One example would be a stack of cafeteria trays

▪ Your code would act on one of ends

➢ You can push onto and pop off of the end, or...

➢ unshift onto and shift off of the front.

o Queue items are accessed FIFO (first in, first out)
▪ Standing in line is a familiar example of a queue

▪ Your code would have to act on opposite ends

➢ push onto the end and shift from the front, or...

➢ unshift onto the front and pop from the end.

Array Functions

• Another function is sort()

o You may have used it in a previous project...

o What do you think it does?

• One thing you want to keep in mind is whether you want
data sorted as strings or as numbers
o By default, sort() will sort the values as strings...

▪ which causes a sequence like 1, 2, 11, 24, 3, 36, 40, 4 ...

▪ to become 1, 11, 2, 24, 3, 36, 4, 40

o A "stringy" ordering considers a shorter string (e.g., "book") to
come before a longer one starting with the same ("bookcase")

Array Functions

• You can tell the sort() function how to sort the items

• For example...
@unsorted = (1, 2, 11, 24, 3, 36, 40, 4);

print sort { $a cmp $b } @unsorted;

• ...gives us 1 11 2 24 3 36 4 40 , whereas...

@unsorted = (1, 2, 11, 24, 3, 36, 40, 4);

print sort { $a cmp $b } @unsorted;

• gives us 1 2 3 4 11 24 36 40 – which, of course, is
probably what we really want!

The Overall World of PERL

• What is a namespace?

o For starters, consider the two parts of the word:

▪ "name" : What we call a thing – a value, a data structure, a function, etc.

▪ "space" : An environment or context, such an area of a program

o Thus, we can think of a "namespace" as a context where specific
names have specific meanings.

o Depending upon your namespace, the same name could have
different meanings.

o A full name for something would consist of:

▪ A namespace

▪ And a local name

The Overall World of PERL

• Consider the machines on the IT Lab LAN.

o Local names: it20, it25, itvm26-1a, and so forth. Within the LAN,
you can access the machines using just those names.

o Fully-qualified names:

▪ it20.it.cs.umb.edu

▪ itvm26-1a.it.cs.umb.edu

o As such, we could say it.cs.umb.edu is a namespace where those
names refer to those machines

• Another example: /home/johndoe/it441/ex/ex2/typescript

o Local name: typescript (i.e., the filename)

o Namespace : /home/johndoe/it441/ex/ex2 (i.e., the path)

The Overall World of PERL

• What is a package?
o Packages are Perl files, with a .pm extension, that are considered a

separate namespace.

o A package, then, is just a group of related "things" – scalars,
arrays, hashes, and subroutines – for a specific purpose.

o Once a package is included in a .pl file (invoking use) and you

want to use one of the variables of the package, you may have to
use the scope resolution operator

$package : :variable_1

The Overall World of PERL

• What is a module?

o Modules are packages which have the capabilities of

▪ exporting selective subroutines, scalars, arrays, and hashes of the
package

▪ to the namespace of the main package itself.

o Therefore, to the interpreter, these look as though the subroutines
are part of the main package itself...

o ...so there is no need to use the scope resolution operator while
calling them.

• This, of course, is partly why we set up CPAN in Exercise 2!

CPAN

• Why use PERL?

• What other languages could we use?

o Ruby, Python, Bash scripting…..

• Other people have already done it:
http://www.perl.org

http://www.cpan.org

http://www.perlmonks.org

• As programmers and IT people are fond of saying...

"Don't reinvent the wheel!" .

http://www.perl.org/
http://www.cpan.org/
http://www.perlmonks.org/

Special Directives

• You have, perhaps, seen (or used)

things like the following

• Warnings concern scenarios where part of our code

o could be problematic at some point in execution...

o but won't necessarily prevent execution

• Both –w and use warnings; make the interpreter print a

warning message in such cases.

• They behave differently with respect to Perl versions,
program scope, flexibility, and other factors

#!/usr/bin/perl –w .

use strict; .

use warnings; .

Special Directives

• use strict; is a bit different.

• Here, we are concerned with

fostering and maintaining good practice.

• Essentially, it forces you to be diligent when writing code

o For example, all variables have to be explicitly declared as lexical
(using my) or as global (using our)

o For new Perl programmers, use strict; can be like "training

wheels" in learning the language

o For the more experienced, it can guard against coding errors

#!/usr/bin/perl –w .

use strict; .

use warnings; .

