
IT441

Network Services Administration

Hashes

The Transliteration Operator

• This string operator resembles the substitute operator from
a regex – s/// – but it functions very differently

• tr/old/new/ will not replace occurrences of the string old
with the string new

• It will replace
o any occurrence of the letter o with the letter n .

o any occurrence of the letter l with the letter e .

o any occurrence of the letter d with the letter w .

The Transliteration Operator

• How can we use the transliteration operator to change
every occurrence of a comma into a period?

• How can we use the transliteration operator to change
every occurrence of the letter a to the number 1 ?

• How can we use the transliteration operator to change the
case of all letters in a string?

• Write a small program to:
o Input the file string.txt into your program

o Change all occurrences of small letters into capital letters

o Print the resulting string to the screen

Hashes

• We have already studied two ways to store and organize
data in a Perl program:

o Scalars

o Arrays

• Each has its own strengths and weaknesses

• In Perl (and many other programming environments) there
is a third way to store data. It is referred to as a HASH

• (It is comparable to a dictionary in Python.)

• Hashes are very useful and very powerful!

Data Structures

• Remember that a scalar variable always starts with a $, for
example $scalar

• Remember that an array structure always starts with a @ ,
for example @array

• Well a hash always starts with a % , for example %hash

What is a HASH?

• A hash is a data structure that consists of pairs of datum,
one called the key and one called the value.

• Some people call a hash an associative array.

• A hash is stored in no particular order.

• In a hash...

o the keys must be unique,

o but the values have no such restrictions.

What Can We Use a Hash For?

• A classic example of a use for a hash in Systems
Administration is the MACIP pairing

• To create this type of hash we would enter:

my %ipMac = (

'192.168.124.1', '2a:09:4e:3c:31:42'

'192.168.124.2', '0e:88:4e:2a:56:07'

'192.168.124.3', '1a:32:6f:5c:6b:1a'

);

• This hash uses the IP as the key and the MAC as the value.

What Can We Use a Hash For?

• We could also enter the previous hash as

my %ipMac = (

192.168.124.1 => '2a:09:4e:3c:31:42'

192.168.124.2 => '0e:88:4e:2a:56:07'

192.168.124.3 => '1a:32:6f:5c:6b:1a'

);

• We call the symbol => the quoting comma because it acts
as a comma and quotes the string to the left of it.

What Can We Use a Hash For?

• Another possible use for a hash is using student numbers as
the key and student names as the value.

o Why could we not reverse the key, value pairs in this case?

• Can you think of some other examples where a hash would
be a good choice for a data structure?

Another Way to Define the Hash

• Since hashes and arrays have a lot in common we can
change back and forth between them.

• Given the following array:
@array = qw(Thao Saigon Hoang Boston Kevin

Dorchester Gary Houston Susan Manchester Allison

Chicago)

• We can create a hash directly by an assignment statement:
%where = @array

• What are the pairs in this hash?

Another Way to Define the Hash

• This way of defining an hash is equivalent to the following:

%where = (

Thao => 'Saigon'

Hoang => 'Boston'

Kevin => 'Dorchester'

Gary => 'Houston'

Susan => 'Manchester'

Allison => 'Chicago'

);

Working with Hash Values

• To look up a value in a hash we use something similar to the
index notation for an array. However there are two (2)
differences:

o Instead of locating the value by number, we locate it by the key

o Instead of using square brackets [] we use curly braces { }

• Here is an example using the hash %where:
print "Hoang lives in $where{Hoang}";

Modifying the Hash

• Adding a new element to the hash is very simple. All that is needed is to
type an assignment statement:

$where{Al} = "Quincy";

• Changing an element in the hash is just as simple:

$where{Kevin} = "Quincy";

o Remember, Kevin used to live in Dorchester but he now lives in Quincy

• Or we can remove an element from the hash using the delete function:

delete $where{Gary} ;

o Will remove Gary and Houston from the hash

Hash Functions

• There are a few functions that operate on hashes.

o keys(%hash) returns a list of all keys in %hash

o values(%hash) returns a list of all values in %hash

o each(%hash) returns each key/value pair in %hash

o delete $hash{key} deletes the key/value pair in %hash

o exists $hash{key} returns true if a entry with that key exists in
%hash

