
IT441

Network Services Administration

Handling Text:
Regular Expressions

DRAFT

Searching for Text in a File

• Make note of the following directory:
/home/ckelly/course_files/it441_files

• Given the file gettysburg.txt in my it441_files directory)
you will write code to find if a given word is used in the file.

• You will use the split function as such:

o my $word (split) (will make more sense in context)

o This will break up the line into words separated by whitespace
characters (space, tab, newline, etc.)

• If the word is found, print out a message indicating such.

• readAndPrint1.pl in it441_files shows it as a script.

Using sed

• Get the file now1.txt from it441_files

• How would you use sed to change the word Now to Then?

• How would you used sed to change the phrase Now is to
the phrase Then was ?

• Congratulations, you have just used your first regular
expression!

Regular Expressions

• Often called "regex", for short

• One of the most useful features of Perl

• Available in most programming languages

• You used it in bash

• What does this do? (Contrast to transliteration)

s/abc/ABC/

• Welcome to the world of regular expressions

Searching for Text in a File

• Given the text file gettysburg.txt in it441_files, you'll
write code to find if a given word is used in the file.

• Use a regular expression such as

/and/

• If the word is found, print out a message indicating such.

• readAndPrint.pl in it441_files shows the solution in the
form of a script.

Searching for Text in a File

• What is different between the two methods of searching?

• What if I want to ignore the case of the letters?

o How would you modify the readAndPrint1.pl program to

check without regard to capitalization?

o It is not very easy is it!

• With regular expressions it is much simpler.

/$word/i

Anchors

• What if I wanted to find a pattern only at the start of a line
or at the end of a line?

• In a regex, we can use anchors.

o To indicate the pattern must be at the start of a line, we use the
anchor ^

e.g., /^The/

o To indicate the pattern must be at the end of the line, we use the
anchor $

e.g., /end$/

Metacharacters

• We can make our regex more general by using
metacharacters.

o See the table on page 167 in the text

• Four of the more common metacharacters are:

. Matches any character (except newline)

? Preceding character or group may be present 0 or 1 time

+ Preceding character or group is present 1 or more times

* Preceding character or group may be present 0 or more times

Metacharacters

• What does the metacharacter . do?

o It matches any single character!

o So give some examples of what /Bet.y/ would match?

• What does the metacharacter * do?

o It matches if the preceding character or group may be present 0
or more times

o So give some examples of what /Bet*y/ would match

Metacharacters

• What will happen if we combine these two metacharacters?
o What will the regex /fred.*barney/ match?

o How about the regex /.*/ ?

• How about if we wanted to find the string 3.14159 ?

o What would this regex match?

▪ /3.14159/ (remember the . is a metacharacter)

o So we need to "escape" it like we do in a double quoted string

▪ /3\.14159/ will work

• If we want to use any metacharacter to represent itself we
need to "escape" it, using the backslash: \

Metacharacters

• What does the metacharacter + do?

o It matches if the preceding character or group is present 1 or
more times

• What string will the following regex match?

/cat/

• What about?

/cat+/

• Or?

/(cat)+/

Groups and Memories

• What did the string /(cat)+/ match?

• Using parenthesis causes the string to be grouped

• The + sign will apply to the group cat , matching the

following...

o cat

o catcat

o catcatcat

o catcatcatcat

o And so forth...

Groups and Memories

• Grouping also allows us to store matches in variables

• You do this by using the string and regex with the binding
operator =~ ...for example:
"foobar" =~ /(oba)/ ; OR $str =~ /(oba)/ ;

• It will store the matched group in the variable $1 , where

you can use it like any other variable:

print "Matched: $1" "Matched: oba"

• You can also store matches from multiple groups, which will
be stored in $1 , $2 , $3 , etc.

Groups and Data Capture

• For example, consider the following.
$info = "I have a catcatcatcat, yes I do!" ;
$info =~ /((cat)+)/ ;

• We would then have info stored in $1 and $2 :
print "1st: $1\n2nd: $2\n";
1st: catcatcatcat
2nd: cat

• This is because Perl matches groups
to numeric variables according
opening parentheses, left to right

/((cat)+)/

$1
$2

Groups and Data Capture

• You can also put multiple matches into an array!
$info = "My friends are Betty, Betsy, and Betey." ;
@names = ($info =~ /(Bet.y)/g);

• We would then have the matches stored in @names :
foreach $name (@names) { print "$name\n"; }
Betty
Betsy
Betey

• The g is one of many options you can add to a regex

• For example, you can also use the i option for a case-

insensitive match

Alternatives

• What if we want a choice in our regex?
o We can use the logical OR: |

o We want to find out if either the name fred or barney is in the

text. We would write the regex:

/(fred)|(barney)/

Character Classes

• We can include groups of characters in a regex

[0-9] will match any number

[a-z] will match any lower case letter

[A-Z] will match any upper case letter

• How about [a-zA-Z]?

• There are shortcuts for these classes

\d represents [0-9] a digit

\D represents [^0-9] a non-digit

There are others as we will see on page 167

The Binding Operator

• So far, we have been matching against the default $_

• What if we want to match against another variable?

• We need to use the binding operator =~
o if ($someOther =~ /fred/) { action}

o This will perform the action if the match is true

Two Functions

• Remember, earlier, we used the split() function to break

the string up into substrings separated by whitespace.

• We can use any arbitrary character to split the string.

• For example, my @field = split (/,/, $str_gettys) will

o Split the gettysburg.txt file (whose contents are in
$str_gettys) into phrases separated by commas and

o Store each phrase in a separate entry in the array @field

• You will write code to try this.

Two Functions (cont.)

• There is also a join() function, to which you supply:

o a string (the "joiner")

o a sequence, such as an array

• For example, join ("#", @fields) will cause

o the elements in the array @fields

o to be combined into one string

o with each field separated with the character #

