
IT441

Network Services Administration

Subroutines

(a.k.a., Functions,
Methods, etc.)

DRAFT

Organizing Code

• We have recently discussed the topic of organizing data
(i.e., arrays and hashes) in order to make it more
manageable

• Similarly, you can also organize your code into logical,
related units

• As you write code, you may find yourself frequently
repeating a set of statements in order to accomplish a task

• In such cases, you will likely want to group those statements
into a function, or subroutine.

Why Subroutines?

• With simpler scripts, separating groups of statements by
white space may be enough

• However, as scripts become more complex, numerous lines
will be increasingly difficult to read, understand, and
maintain.

• Also, it may become tedious to repeatedly type the same
several lines of code.

• Creating subroutines allows you to make your code more
organized and concise.

What Is a Subroutine?

• At the most basic level, a subroutine is a named block of
code that accomplishes a task

• When a subroutine is invoked, the flow of control jumps to
the subroutine and executes its code

• When complete, the flow returns to the place where the
subroutine was called and continues

• The invocation may or may not return a value, depending
on how the subroutine is defined

How do we make a subroutine?

• Subroutines in Perl have three parts:
1. The declaration sub

2. The name of the subroutine

▪ The name may contain a list of parameters

▪ Make the name mean something to you

3. A block of code enclosed in curly braces { actions }

• The subroutine can contain any code that the main routine
can contain. It can even call other subroutines.

Example Subroutines

sub getTimestampEpoch {

body...

}

sub getIPAddress {

body...

}

Components:

1. Keyword "sub"

2. Name of subroutine

3. Code body

• The first example might be
used to get a timestamp, in
Unix time, for an auth.log
entry line

• The second could extract an IP
address from a log entry line

How do we invoke a subroutine?

• The most common way is to just refer to it by its name
followed by a set of parentheses () .

$tStamp = getTimestampEpoch($line);

• This can call a subroutine defined anywhere in the file.

• If the subroutine is defined prior to its invocation, then the
parenthesis can be omitted.

$tStamp = getTimestampEpoch $line ;

Other ways to call a subroutine

• We can also invoke the subroutine before it is defined, if we
let the code know it is a subroutine. We can do the by:
o By including the statement sub exampleSubroutine; prior to

invoking it

o Or calling it by &exampleSubroutine;

o You can think of the & as a type declaration sort of like the $, @ ,
and % symbols

• The first method is the more common

• See following...

sub getTimestampEpoch;

lines of code...

@stamps = ();

while (<INFILE>){

$st = getTimestampEpoch $_ ;

push @stamps, $st;

}

more lines of code...

sub getTimestampEpoch {

body...

}

Subroutine Argument List

• When calling a subroutine, arguments (parameters) can be
passed in -- via an array, in parentheses, following the
subroutine name.

• Arguments are passed by reference, not by name or value

• Arguments are passed in the array @_

• You should not use the array @_ directly

o Assign it to another array: @args = @_ ;

o ... or to a variable list: ($name, $age, $major) = @_ ;

• The latter makes assumptions about the contents of @_

Return values

• Subroutines return a value. It is the result of the last
assignment completed.
$value = exampleSubroutine();

• You can use a return statement in a subroutine

o As soon as the first return statement is reached, control is
returned to the calling program.

o In other words, subroutine execution finishes immediately.

o A subroutine may have more than one return statement

• See following...

Use of a return statement

sub getIPAddresses {

@lines = @_ ;

@ipAddrs = ();

foreach $line (@lines){

if ($line =~ /(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})/){

push @ipAddrs, $1;

}

}

return @ipAddrs;

}

Use of a return statement

sub verifyValidIPAddress {

@args = @_ ;

@octets = split (/./, $args[0]) ;

foreach $octet (@octets){

if ($octet > 255){

return 0;

}

}

return 1;

}

Variable Scope

• There are two main types of variables.

o Global or package variables:

▪ Global variables are accessible anywhere in the program

▪ The notion of a "package" is a more advanced topic...

o Lexical or local variables

▪ Only accessible within the block of code where they are defined

▪ Defined with a my statement

• Why do we have two types of variables?

• All variables are global by default!

• If using strict , you can make a variable global with our

Complex Data Structures

• For more information, consult this link:
http://perldoc.perl.org/perldsc.html

• Sometimes, you want to organize complex data.

o For example, an "array of arrays" might be handy; however, code
such as the following...
@arr1 = (1,2,3,4); @arr2 = (5,6,7,8); @arr3 = (@arr1, @arr2);

@arr4 = ((1,2,3,4), (5,6,7,8));

o ...will merely "flatten" the two separate arrays into a single array.

• Fortunately, there is special syntax you may use for this
purpose...

Complex Data Structures

• Either of the following gives you an "array of arrays" :
@arr1 = (1,2,3,4); @arr2 = (5,6,7,8);

@arr3 = ([@arr1] , [@arr2]);

OR

@arr4 = ([1,2,3,4] , [5,6,7,8]);

• To access the contents:

o Single element: print $arr4[1][2]; # prints 7

o One of the inner arrays: @inner1st = @{ $arr4[0] }; # (1,2,3,4)

• Warning: The syntax can get very complex!

Complex Data Structures

• You can also have a "hash of arrays" :
%myHash = ("foo", [@arr1] , "bar", [@arr2]);

OR

%myHash2 = (hello => [@arr1] , world => [@arr2]);

• To access the contents:

o Single element: print $myHash2{world}[2]; # prints 7

o One of the inner arrays: @myArr = @{ $myHash{foo} }; # (1,2,3,4)

• How about "arrays of hashes" and "hashes of hashes"?

• Absolutely! Consult the aforementioned link...

