Switch Configuration

- Virtual LANs
- Configuring Switches
- Spanning-Tree Protocol
- Network Management (see textbook)
- Power over Ethernet (see textbook)

- Recall our discussion of physical versus logical entities:
 - o "Physical" tends to indicate the <u>actual or literal</u> entity
 - o "Logical" refers to something more <u>abstract</u>. It can...
 - Stand in for
 - Emulate
 - Serve as a proxy for
 - o ...its physical counterpart. In the case of emulating, we might call such a thing virtual.

- A <u>virtual LAN (VLAN)</u> is a group of networked hosts (e.g., servers and computers) that are
 - Configured <u>as if</u> they were on a LAN ...
 - ...even though they may be separated by routers, in actuality.
- This is useful because the network administrator can group the hosts based on factors other than physical location, such as the department within an organization.
- There are three main types of VLANs...

· Port-based

- Here, a specific VLAN is associated with a particular set of ports on a switch.
- For example, if a single switch were to have 16 ports, you might have...
 - VLAN 1: Ports 1-4
 - VLAN 2: Ports 5-10
 - VLAN 3: Ports 11-13
- While switches normally form a single broadcast domain, these VLANs would in fact belong to separate domains.

Tagged-based:

- This uses Ethernet frames, along with the IEEE 802.1Q standard
- Here, the Ethernet frame will include a VLAN id
- This way, you could actually have more than one VLAN on a switch port

· Protocol-based:

- Data traffic connects on different ports based on protocol
- Separates data traffic for different networks

- Assignment of VLAN membership can be of two types:
 - Static assignment: Port-based. Membership happens at time of port assignment to a VLAN.
 - o Dynamic assignment:
 - Port assignment is based on other factors, like MAC address or username.
 - This way, location can change, while maintaining VLAN membership.

- With regards to using a switch in GNS3, much will be similar.
- Many of the modes and commands you used to interact with your Cisco router will also apply to your Cisco switch -though there will also be some differences because the switch is a different type of device.
- Most notably, you will be configuring a VLAN, which will have an IP address.
 - On a router, the IP address exists so that it can serve as a gateway for the LAN

- On a switch, the VLAN IP address is so that the switch can communicate with other VLAN devices.
 - This is useful if you need to remotely connect to the switch to manage it.
 - The switch is still functioning at <u>Layer 2</u>. It is <u>not</u> performing any routing.
- Some command examples will follow, with two caveats:
 - What we are describing here is in the context of <u>GNS3</u> and our labs in this class. However, much will still be relevant in <u>real-life</u> situations dealing with physical networks and hardware.
 - In GNS3, we are *not* using a proper managed switch. Instead, we are using an <u>EtherSwitch router</u> that is configured to <u>behave</u> like one.
 - As such, <u>some</u> of the commands that you use will be different than what is presented in the textbook.

• In *configuration mode*, "VLAN" is like a type of interface that you can configure.

```
ESW1 (config) #interface VLAN 1
```

- In <u>interface configuration mode</u>, you will use similar commands as you used on a router
 ESW1 (config-if) #ip address 192.168.2x.10 255.255.255.0
 - ESW1(config-if)#no shutdown
- Your switch will also need a <u>default gateway</u>, which will be your router's local NIC:

```
ESW1 (config) #ip default-gateway 192.168.2x.1
```

 Finally, you will also be able to view configuration information for VLAN 1:

ESW1#show interface VLAN 1

- In *Homework #10*, you will start by configuring the first VLAN, which will be the default for administrative purposes.
- At first, all Ethernet ports will be associated with that one.
 You can verify this by running the command show vlan
 (On your EtherSwitch router in GNS3: show vlan-switch)
- Moving forward, <u>you can establish other VLANs</u>.

- On your EtherSwitch router in GNS3...
 - you would enter the correct mode with the command vlan database, which gives you the prompt ESW1 (vlan) #
 - There, you can create new VLANs, specified by number and name:
 vlan [number] name [VLAN's name]. For example:

```
vlan 2 name Sales
vlan 3 name Engineering
```

- o (*Contrast* this to the textbook example.)
- You can associate different Ethernet ports with one VLAN or another...

- To do this:
 - Enter <u>configuration mode</u>.
 - Enter <u>interface configuration mode</u>, for the port in question.
 - o Enter the command switchport mode access
 - Enter the command
 - o switchport access vlan [number]
 - The end command

• Example:

```
ESW1#configure terminal
ESW1(config)#int fa 1/1
ESW1(config-if)#switchport mode access
ESW1(config-if)#switchport access vlan 3
ESW1(config-if)#end
```

• You can run **show vlan** (On your EtherSwitch router in GNS3: **show vlan-switch**) in order to see the updated state of Ethernet ports with respect to VLANs.

- In many cases, it is good to have some level of <u>redundancy</u> in your network setup. For example...
 - A host device may have <u>both</u> an Ethernet card <u>and</u> a wireless card, enabling it to gain network access in a wider variety of environments.
 - A wireless access point might function on both the <u>2.4 GHz</u> and <u>5</u>
 <u>GHz</u> bands, allowing more connection options.
 - o If there are <u>multiple</u> Layer 3 routes between two endpoints, then one route can be used in the event that the default route fails.

- As such, you might have Layer 2 redundancy in a LAN.
 - That is, there might be <u>more than one</u> Layer 2 path between two devices, on account of <u>multiple</u> switches being interconnected. We might say that <u>the switches themselves</u> are in a "mesh" topology.
 - On <u>one</u> hand, this can be beneficial for maintaining network connectivity, in the event that one switch fails.
 - On the <u>other</u> hand, if not properly managed, you can end up with a <u>switching loop</u>.
 - Example: https://www.youtube.com/watch?v=P04gaoq53FU (0:10 3:10)

- A <u>switching loop</u> occurs when a data packet, that has passed out of a switch, ends up passing back into it.
 - This can happen in scenarios where the switch does not have one unique destination for a packet -- such as <u>broadcasting</u> or <u>flooding</u>.
 - o It begins when the switch receives a data packet on a port....
 - For whatever reason -- such as a broadcast packet or an unknown destination MAC address -- the switch forwards (i.e., <u>floods</u>) the packet to all ports (except for the entry port).
 - Other switches, on receiving the packet, do the same.
 - Because of <u>path redundancy</u>, the packet ends up coming back.

- Two main types of problems can arise:
 - 1. Broadcast storms:
 - A broadcast packet is addressed to ff:ff:ff:ff:ff:ff
 - If a switch receives one, then it transmits that packet to <u>every</u> other port currently in use.
 - In other words, one packet in = <u>Multiple</u> packets out!
 - If one of those packets happens to arrive again, then it is once again broadcast out
 - This <u>exponential</u> proliferation of packets can quickly overtake the network's capacity

2. MAC flapping:

- When a host sends a packet into a switch, the <u>source MAC</u> is examined to establish an <u>association</u> (between the host and the port) in the switching table.
- If the switch does not have the <u>destination MAC</u> in its table, then it **floods** to all other ports, except the source port.
- If the same packet enters <u>another</u> port -- on the same switch
 -- via a loop, then the source MAC can become associated with that other port.
- This creates <u>instability</u> in the Layer 2 links.

- On <u>managed</u> switches, we can use <u>Spanning Tree</u> <u>Protocol</u> (STP) to prevent loops and keep data flowing along the right paths.
- To understand the notion of a "spanning tree", consider a collection of interconnected nodes.
 - Between any two nodes, there are multiple paths.
 - You can eliminate (or "disable") some of those connections, such that, between any two nodes, there is only one possible path because redundant paths have been removed.
 - o If you make one node the "root", then you can think of it as a tree

- When you have <u>multiple switches with redundant paths</u>, the purpose of STP is to prevent looping by:
 - Making one of those switches the root
 - For any other switch, allowing only one port to lead to the root
- Switches accomplish this by exchanging Bridge Protocol
 Data Units (BPDUs) in order to:
 - Choose a root switch
 - o For other switches:
 - Determine the <u>shortest</u> path to root
 - Choose the switch port providing that best path
 - Decide which switch ports participate in STP

- In addition, there are also packets for <u>communicating</u> topology changes and <u>acknowledging</u> those notifications.
- There are <u>five</u> STP states:
 - Blocking: Not sending data but still keeping track of BPDUs
 - Listening: Processing BPDUs
 - <u>Learning</u>: Using packets to learn MAC addresses
 - Forwarding: Switch is currently sending and receiving
 - Disabled : Not actually part of STP, but the network administrator can choose to disable a port