LAN Setup Reflection

- After the LAN setup, ask yourself some questions:
 - Does your VM have the *correct IP*?
 - Are you able to <u>ping</u> some locations, internal and external?
 - Are you able to *log into* other VMs in the classroom?
 - What went <u>well</u>? What went <u>not so well</u>, and how did you <u>solve</u> it?
- **Remember:** Snapshots, Admin Logs

What is a *local area network* (LAN)?

- A group of devices (computers, etc.) that send and receive data traffic amongst themselves.
- A local area network will have a <u>network address</u> and a <u>subnet mask</u> that define the local address space.
- For example, the IT Lab LAN:

o Network Address: <u>10.0.0</u>

o Subnet Mask: 255.255.255.0

• Address Space:

10.0.0.<u>0</u> to 10.0.0.<u>255</u>

What is a *local area network* (LAN)?

- Technically, the <u>0</u> and <u>255</u> addresses have special meanings, so the actual address space would be <u>1</u> to <u>254</u>
- To connect <u>more than two</u> computers in a LAN, you at least need a switch.
- A switch sends and receives traffic between specific devices within a LAN.
- If you only needed communications <u>within</u> the LAN, the switch would be enough.

What is a *local area network* (LAN)?

- However, to send and receive communications outside the LAN, you will need a router.
- A **router** forwards traffic between two or more LANs
- On a LAN, the router usually serves as the *default gateway*.

 Traffic to a destination IP in the <u>local</u> address space (as defined by the network address and subnet mask) can simply go directly to destination – via the switch.

 If the destination IP is <u>not</u> local, then it goes to the default gateway, which decides how to <u>route</u> it from there

it20 is a <u>router</u>

- it 20 is functioning as a <u>router</u>, so it is connected to <u>two</u> networks
 - > cs.umb.edu
 - > it.cs.umb.edu
- In order to do this, it20 needs two Ethernet cards
- Each of these cards must be configured separately

Networking and the Boot Process

- When any machine boots, it knows nothing about the hardware or the network to which it is connected
- On Linux machines it gets this information from scripts in a special directory
- This directory is *init.d*
 - On Ubuntu the absolute path of this directory is /etc/init.d

On Red Hat, you will find it in /etc/rc.d/init.d

Networking and the Boot Process

- <u>init.d</u> contains shell scripts that can start, stop, and restart services
- Not all services are started automatically when you boot the machine, but all services come up, go down, or restart using scripts in <u>/etc/init.d</u>
- To bring up the network, a Linux machine runs the script
 networking, which is one of the many scripts in <u>init.d</u>
- The networking script reads configuration information from text files in /etc/network

Network Interface Controllers

- To connect to a network, a computer needs special hardware
- Usually, this hardware is an Ethernet card
- An Ethernet card is one example of a network interface controller, usually known by its acronym – NIC
- A **NIC** is a hardware device that connects a computer to a network

Configuring a NIC

- When a Linux machine boots, it needs information to configure its network card
- It gets this information in the text file <u>interfaces</u> which, on Ubuntu, can be found in the <u>/etc/network</u> directory
- Its <u>absolute pathname</u> is <u>/etc/network/interfaces</u>

 All the information a Linux machine needs to connect to the network is found in <u>interfaces</u>

 $_{\odot}$ So if you want to change anything, you need to edit this file

However, only *root* can change this file, so you must use *sudo* to run a text editor on it

Configuring a NIC

- If you want to see how a machine is <u>configured</u> for the network, you can either:
 - 1. Look at *interfaces*, or

2. Run **ifconfig** utility with no arguments

- If the computer has more than one network card, each one must be configured in <u>interfaces</u>
- The first network card is eth0, and the second one is eth1

/etc/network/interfaces on it20:

This file describes the network interfaces available
on

your system and how to activate them. For more

information, see interfaces(5).

The loopback network interface auto lo iface lo inet loopback

The primary network interface
The green ethernet cable into the motherboard jack.
auto eth1

iface eth1 inet dhcp

• • •

<u>/etc/network/interfaces</u> on <mark>it20</mark>:

The inside IT network # The yellow ethernet cable into the add-on PCI NIC. auto eth0 iface eth0 inet static address 10.0.0.1 netmask 255.255.255.0 network 10.0.0.0 broadcast 10.0.255

- The network card designated as <u>eth0</u> is connected to <u>it.cs.umb.edu</u> (<u>internal</u>)
- The network card designated as <u>*eth1*</u> is connected to <u>*cs.umb.edu*</u> (<u>*external*</u>)

 For each network interface in <u>/etc/network/interfaces</u>, you see a line beginning with "auto" and followed by an interface name:

auto eth0

- This line tells the operating system to automatically bring up this **NIC** every time the system is booted
- Each network interface controller must have its own IP address, as well as some information

- There are two ways give the NIC its configuration information
 - 1. Put the information in the *interfaces* file
 - 2. Use <u>DHCP</u>
- Two types of IP addresses that can be assigned to a NIC
 - > A static IP address
 - > A dynamic IP address obtained from an address pool
- A *static* IP address never changes, hence the term "static"

- A *static* IP must be either:
 - > Written into <u>/etc/network/interfaces</u>, or
 - > Specifically assigned to a machine via DHCP
- DHCP stands for <u>Dynamic Host Configuration</u> <u>Protocol</u>
- DHCP allows a machine to obtain all its network configuration information from another machine – the DHCP server

- In the entry below, the first Ethernet card, <u>eth1</u> is configured to use DHCP
 - auto eth1
 - iface eth1 inet dhcp
- Like <u>eth0</u>, the operating system will bring it up automatically at startup, because we use "auto"
- The second Ethernet card is <u>eth1</u> because the first is <u>eth0</u>

The first Ethernet card is configured to use a static IP address

```
iface eth0 inet static
   address 10.0.0.1
   netmask 255.255.255.0
   network 10.0.0.0
   broadcast 10.0.0.255
```

 Since this NIC is <u>not</u> using DHCP, it must get the other network configuration information it needs from <u>/etc/network/interfaces</u>

- The netmask and network values tell <u>it20</u> which NIC to use to send an IP packet
- If the packet is addressed to the local network,
 <u>it.cs.umb.edu</u>, then it uses one card; <u>otherwise</u>, it uses the other
- <u>it20</u> (at IP address <u>10.0.1</u>) is the gateway for the IT Lab network

• This information is often provided in <u>/etc/network/interfaces</u>

On <u>our</u> network, however, it is provided in another file:
 /etc/dhcp/dhcpd.conf

- <u>eth1</u> talks to the <u>cs.umb.edu</u> network as well as the greater Internet, to which it is connected!
- The **broadcast address** is given by this line

broadcast 10.0.255

- A packet sent to this address is sent to every machine on the local IT Lab network
- You virtual machines need other two details for their NICs:
 - 1) A <u>gateway</u> address. A gateway is a router that connects the local network to the Internet
 - 2) The address of a <u>DNS server</u>

The Loopback Interface

 Every <u>/etc/network/interfaces</u> file has an entry for loopback

The loopback device is named <u>10</u>

 $_{\odot}$ It is <u>**not**</u> a physical device.

Rather, it is a software <u>emulation</u> of a network card

- Any packets sent to the loopback device come right back to the machine, without ever going out on the network
- The loopback device is used for testing, and some services depend on it

The <u>/etc/hosts</u> file

• Every machine on the internet has an IP address

But, you don't usually type the IP address itself *Instead* you enter a <u>URL</u>, which is much easier to remember

- Most of the time, your machine sends this name to a DNS server, which translates the name into an IP address, which you then uses to get the web page
- But, there is another way to turn a name into an IP address...

The <u>/etc/hosts</u> file

- Your machine can also look in the text file
 /etc/hosts
- Each line of this text file contain a <u>hostname</u> and an <u>IP</u>
 <u>address</u>
- Using this file (instead of DNS) is <u>fast</u> because you don't have to send a network message to get it
- Has anyone edited <u>/etc/hosts</u> prior to this class?

Private IP Addresses

- Inside a network, only one machine can have a given private IP address
- But every local network can assign its machines addresses from certain IP address blocks
- For <u>IPv4</u> these blocks are:

These blocks are for <u>private</u> IP addresses!

Private IP Addresses

- Public IP addresses are visible to the world at large, and you have to get them from your regional Internet registry
- Both <u>IPv</u>⁴ and <u>IPv</u>⁶ provide for private addressing
- Private addresses are only visible inside a network
 - $_{\odot}$ Only $\underline{\textit{one}}$ machine can have a given public IPv4 or IPv6 address
 - Two different machines can both have the same private address, say 10.0.0.1, as long as they are on different local networks

Private IP Addresses

- Because private IP addresses are <u>invisible</u> outside the network, they offer security from the dangers of the Internet
- They also make life easier for system administrators

Translation: Makes life easier for YOU! :-)

- Every machine that is on the public internet needs a public IP address which can only be obtained from a registry
- But a system administrator can assign machines private address without having to get permission from anyone
- This gives you another measure of control over the networking process

- The configuration file for DHCP is /etc/dhcp/dhcpd.conf
- This file has many entries, each
 - starting with the <u>name</u> of thing that is being configured
 - Followed by an open curly brace {
 - Followed by a number of lines, each of which ends with a semi-colon ;
 - > and ending with a closing curly brace }

```
<u>Ex.:</u> For our it.cs.umb.edu network
```

```
subnet 10.0.0.0 netmask 255.255.255.0 {
```

```
allow unknown-clients;
```

```
range 10.0.0.20 10.0.0.89;
```

```
option domain-name-servers 10.0.0.251,10.0.0.252;
option domain-name-servers
10.0.0.1,192.168.104.12;
```

```
option routers 10.0.0.1;
```

```
default-lease-time 600;
```

max-lease-time 7200;

The line

```
range 10.0.0.20 10.0.0.89;
```

specifies the *range* of private IP addresses.

- The DHCP server picks an address from this range each time a machine on our network asks for one
- We use <u>static IP addresses</u> for the virtual machines in this lab, but they will get that static IP address from <u>DHCP</u>
- DHCP can provide all the information necessary, for a machine to connect to the network

• The lines

```
option domain-name-servers 10.0.0.251,10.0.0.252;
```

option domain-name-servers
10.0.0.1,192.168.104.12;

specify the value(s) that DHCP will give your virtual machine to use for <u>DNS services</u>

The line

option routers 10.0.0.1;

specifies the *router* address DHCP gives your virtual machine. This is the "*gateway*" to which we referred, earlier.

• The line

default-lease-time 600;

specifies, in minutes, how long you can use this this address

- When DHCP gives a machine an IP address, it is said to give that machine a lease on the address
- After the lease expires, a machine that uses the IP address from DHCP will ask for an extension of the lease

• The line

max-lease-time 7200;

specifies the maximum minutes a machine can hold its lease

- After the lease *expires*, a machine asks for a new lease
- Each virtual machine will be assigned a specific static IP address, which it will get from an entry in /etc/dhcp/dhcpd.conf

• The entry in question looks like this:

```
host itvm2x-yz.it.cs.umb.edu {
hardware ethernet 00:0c:29:c5:37:f1;
fixed-address 10.0.0.151;
}
```

 The series of <u>hexadecimal</u> numbers is the <u>MAC address</u> of the virtual machine that gets this static IP address

Doing without DHCP

- DHCP is not the only way to give your virtual machine an IP address
- You can give your machine a static IP address, by entering it in your <u>/etc/network/interfaces</u> file
- One way or another, each NIC on a machine must get the following information:
 - Network address
 - ≻IP address
 - Gateway address

- Broadcast address
- ➢Netmask
- DNS Nameserver addresses
- It can get this from a DHCP server <u>Or</u> from /etc/network/interfaces