Project #3, Part I: Implementing NFS

- Distributed File Systems
- NFS
- Ports and Network
 Conversations
- Destination and Return
 Ports
- RPC-based Services

- Configuring Server
 Daemons
- /etc/exports
- autofs
- Sharing home directories in the Lab
- /etc/auto.home

Distributed File Systems

- Most networks have a central place where files are kept and are available to any machine on the network
 - This is a necessity whenever people work together
 - If you work in an office, you may have some files on your own PC
 - However, the files for your projects may reside on a file server where <u>anyone</u> on your team can access them
- There are technologies that allow machines to make their files available to anyone on the network, forming a distributed file system

Distributed File Systems

- Our CS LAN has such a distributed file system
 - You can log into any machine on the network, and you will always land in your home directory...
 - ...even though you are not connected to the machine whose hard drive has your home directory
 - Your home directory <u>lives</u> on the hard disk of some network machine...
 - ...but this disk is mounted whenever you log in to any machine on the network!

Distributed File Systems

- There are two major file server packages that are commonly used on Linux:
 - Network File System (NFS)
 - Samba
- <u>Samba</u> allows files to be shared between <u>Linux</u> and <u>Windows</u> machines
- **NFS** only works on <u>Linux</u>

NFS

- Again, "NFS" stands for Network File System, and it only works on Unix and Linux
 - NFS allows each machine on the network to make some of its directories available to other machines
 - Unix and Linux have NFS as part of the kernel
- After you finish the first part of Project 3, every VM will be both
 - an NFS <u>server</u> and...
 - o an NFS *client*

NFS

- This means that each team will perform the setup for <u>both</u> the client <u>and</u> server components of NFS
 - Each machine will make the home directories for its users available to other machines when you log into them
 - Therefore, the home directories created on one virtual machine will be available on all the other virtual machines
- NFS makes it seem like all shared directories are part of one big file system.
- It does this through mount points

NFS

- A mount point is a directory on your machine where other shared directories will appear <u>as if</u> they were actually part of your local file system
- Directories used as mount points should be empty
- Shared NFS directories can be
 - mounted automatically when the machine is booted <u>or</u>...
 - made available from the command line using the mount command

- Every machine on a network needs services from other machines
 - Web pages, file access, configuration info, etc.
 - All of these services involve <u>communication</u> over the network
- This communication takes place using <u>packets</u>
 - Packets are <u>chunks of information</u> sent out over a network
 that allow two computers to communicate
 - When a file is transferred over the network, it is <u>broken up</u> into multiple packets

- On the Internet, there are two major packet protocols
 - > **TCP**: <u>Transmission Control Protocol</u>
 - > **UDP**: <u>User Datagram Protocol</u>
- UDP is simpler than TCP
 - o **TCP** establishes a connection between two machines
 - ∘ **UDP** does not
- "Connection" means that packets can keep going back and forth, as long as one machine needs the other's services.
- So most network services use <u>TCP</u>

- Knowing the IP address of the machine providing a service is <u>not enough</u> because you may need <u>multiple</u> services from that machine
- For example <u>it20</u> provides <u>several</u> services to each machine on the IT Lab network

- All these services are available <u>SIMULTANEOUSLY</u>
- When you need a particular service from <u>it20</u>, it is not enough to simply send a packet to <u>10.0.0.1</u>

- How is a machine like <u>it20</u> supposed to know what to do with the packet it gets from your virtual machine?
- In order to allow a given host to provide more than one service, you must provide <u>additional</u> information in the packet -- a <u>port</u>
- A <u>port</u> is
 - > A communication channel
 - > At a **specific** IP address
 - > On a specific machine.

- Ports are identified by their port number
 - To get a service from another machine, you need its IP address and the port number
 - The combination of an IP address, a port, and the protocol used is called a socket
- Port numbers from 0 to 1023 are special
 - They are known as the well-known ports
 - The well-known ports are given to widely used network services, such as port 80 for a web server
 - On Linux, only root can start a process that uses a wellknown port

Destination and Return Ports

- Two computers communicate by exchanging packets, addressed to a specific port, at a specific IP address
- This is called a <u>socket</u>
- For most network services, the communication goes in <u>two directions</u>
 - Therefore, when a client sends a packet to a server, it has to have a destination socket, consisting of the server's IP address and the port number for that particular service
 - But it also has to provide a return socket, where it can receive packets back from the server

Destination and Return Ports

- The port number for the return socket is NOT the same as the destination port number
 - This allows your machine to get packets from multiple servers
 - For example, your browser can be receiving packets simultaneously from many different web servers, even though each server is listening on port 80
- Server ports are standardized, but clients pick their return ports at random to receive packets from the server

RPC-based Services

- NFS has been around in the Unix world for a long time so long in fact that it does not use network ports, which came into common use long after Unix was created
- NFS uses a technology called <u>remote procedure calls</u>, which allow a user on <u>one computer</u> to run a program on <u>another computer</u>
- Instead of port numbers, RPC services use <u>program</u> <u>numbers</u>, each of which is assigned to a specific daemon

RPC-based Services

- On modern versions of Unix, these program numbers have to be converted to Internet port numbers
- This is done through a an RPC port map program, which runs as a background process on all Linux/Unix machines
- When an RPC-based service like NFS is started, it tells the port mapper what RPC program number it is using
- When another machine needs to use the service, it contacts the port mapper on the machine providing the service to learn the port number it should use

RPC-based Services

- Once the machine knows the port number, it <u>creates</u> a remote procedure call and <u>wraps it up</u> in a TCP packet sent the server
- This is knows as <u>tunneling</u>
- To find out what RPC program numbers are mapped to which ports use the command rpcinfo -p

Configuring Server Daemons

 NFS provides its services through a number of daemons, using software contained in two Ubuntu packages

```
nfs-kernel-server nfs-common
```

- The nfs-kernel-server package contains software for daemons that provide the basic NFS services
- The **nfs-common** package contains software for the daemons that help the $\underline{nfs-kernel-server}$ daemons do their job

Configuring Server Daemons

- The configuration file for these daemons is /etc/default/nfs-kernel-server
- The installations, that you will perform for NFS, will automatically configure all these daemons to run when you boot your virtual machine
- In addition, you will need to configure your VM...
 - 1. As a *server*, to share *your* personal homes to the network
 - 2. As a *client*, to mount *other* users' homes

/etc/exports

- Here, you are configuring your VM as an NFS <u>server</u>.
- If a machine wants to share a directory through NFS, it must make an entry in /etc/exports
- Therefore, there will be a line in this file for each directory you are sharing
- Each line will have the same format:
 - DIRECTORY PATHNAME HOST (OPTIONS)
- **DIRECTORY_PATHNAME** is the **absolute pathname** of the shared directory on your virtual machine

/etc/exports

- **HOST** is the machine or machines that can access the shared directory i.e., the **whom**
- You can specify the host in many ways
 - By the <u>hostname</u> (only for machines inside the network)
 - o By the IP address for a machine
 - All the machines in a <u>specific network or subdomain</u>
- We will use the last format in today's project
- OPTIONS specify **how** the directory is to be shared

/etc/exports

Some of the more important options are:

ro	Files in directory are read only
rw	Files in directory can be changed if you have the proper permissions
root_squash	The root account on another machine does not have root powers in this directory
sync	Changes to the files are written to disc before another uses accesses the file
no_subtree_check	Does not check permissions on parent directories of shared directories

 There must be no spaces between the options for any host!

- Here, you configure your VM as an NFS <u>client</u>.
- Although you can mount shared directories at the command line, you will usually want this to happen <u>automatically</u> -- when the machine boots
- This is done using the <u>autofs</u> package, which you will install on your virtual machines in this project
- The autofs software is smart
 - By default, it will only mount a directory when you "ask for it" – i.e., <u>try to access it</u>
 - This conserves network resources

- The main configuration file for <u>autofs</u> is /etc/auto.master
- Each line in this file lists a mount point and points to another file with information about the directories to be mounted there
- You will make the following entry in auto.master
 /home /etc/auto.home
- This line tells <u>autofs</u> to get the information it needs to mount shared home directories from the file /etc/auto.home on your virtual machine

- You will copy this file from <u>it20</u>, where I have made an entry in /etc/auto.home on <u>it20</u> for you and your teammate
- Each entry lists:
 - A directory (that can be mounted)
 - and where it can be found
- For example, if the **gh** account's home was located on itvm25-3b, the entry for the user's home directory in /etc/auto.home would be

```
gh itvm25-3b:/home.itvm25-3b/&
```

- gh is the name of the directory in the NFS share and itvm25-3b:/home.itvm25-3b/& tells NFS where to find the source
- itvm25-3b is the hostname, and /home.itvm25-3b/&_gives the absolute address of the shared directory
- There really isn't anything named &. The & stands for the name of whatever is the first thing on the line – which in this case is "gh"
- As such, on that line, /home.itvm25-3b/& is really /home.itvm25-3b/gh

- You must copy /etc/auto.home from it20 to your
 VM, using the scp command
- You will need to set up the command <u>very carefully!</u>
- On your virtual machine, you will be able to
 - Log on to other virtual machines in the Lab and...
 - ...see <u>your</u> home directory as long as <u>they</u> have set up NFS properly
- Once you get <u>autofs</u> working, you will have access to <u>your</u> home directory for your account on the <u>other</u> virtual machines (as long as they have <u>autofs</u> working)

- However, at startup, if you run <u>ls /home</u> now, you would see nothing even if your config is correct.
- That's because <u>autofs</u> does not really mount a directory <u>until it's needed</u>
- The moment you access (or "ask for") your home directory it will be there
- So if you ran <u>cd</u> ~ to go to your home directory, that directory would be automatically mounted
- If you now ran **ls /home** again, you would see your home directory

- You can tell <u>autofs</u> to mount the directories without waiting for someone to access them if you use the "ghost" option in for the entry in /etc/auto.master
- To make the home directory I mentioned above visible (without going to that directory using cd), the entry in auto.master should be

```
/home file:/etc/auto.home --ghost
```

- However, you are advised <u>not</u> to do this in the project because it can complicate troubleshooting!
- Just be aware of the option, for future reference...

- In the 2nd half of *Project 2*, you created home directories for each person on your team
- Now, we will use NFS to share those home directories on the IT Lab LAN so that
 - you can log on to <u>any</u> virtual machine in the lab with your personal username and password...
 - o ...and your home directory will be available
- In order to make this work, we are going to have to make some changes

- Before Project 3, /home should have <u>three</u> directories
 - One for <u>sysadmin</u>
 - One for the username of <u>each team member</u>
- In this project, you are asked to <u>rename</u> the current /home directory and then <u>create</u> a new /home
- This new directory will serve as the mount point for all the home directories of all students in this class – but <u>not</u> for the sysadmin account

- We <u>don't</u> want the sysadmin account to be shared
 - We want it to be a unique account for each machine so that only that one account can be used to make changes on that machine
 - So, while your individual home directories will be mounted in the new /home, the local sysadmin account will reside in the <u>old</u> /home directory – which you will have renamed in Project 4
- But you have to <u>tell</u> the Ubuntu running on the virtual machine to look in a <u>different</u> place to find the home directory for sysadmin

- The location for the home directory for each user is found in /etc/passwd. Thus, you will have to edit the entry for sysadmin there.
- There is one further wrinkle in our setup...
- When you log in with your account on <u>another</u> virtual machine, you will access your home directory through <u>NFS</u>, using the mount point /home on that VM
- But, you will get access to these home directories the same way on your <u>own</u> virtual machine

- Although your real home directory <u>lives</u> in the directory you renamed, you will <u>access</u> it through NFS, at the local mount point /home
- Admittedly, it may seem weird to access a directory via NFS when it is already on your local machine.
- It does not have to be this way, but it makes things simpler for me

/etc/auto.home

- The file /etc/auto.home has the information that lets NFS mount the home directories for each student in the class
- For this to work, each machine must have a copy of this file from <u>it20</u>
- You'll use scp, which stands for "secure copy"
- It allows you to copy a file from one machine to another – with the data stream encrypted

/etc/auto.home

- You will need to set up the command carefully, supplying certain pieces of information....
 - A <u>source</u>, consisting of a remote host (along with a valid user on that host) and the file path on that host
 - A <u>destination</u>, a file path where the copied file should go
- You will be doing this from your VM's command line
- The remote host will be it20, and you can use the it341 user account, or your own.
- Also, remember you are creating a new file in /etc