
Linux and Project Tips

• Pagers

o These are utilities that allow you do view (potentially) long
text files, one screen at a time.

o Text editors like nano can be used for viewing text files, but
are really not built for that purpose.

o Learn to use a pager like less

 Enter and Control-P To move forward or backward,
respectively, by one line

 Space and Control-B Forward or backward by one screen

 q To quit

Linux and Project Tips

• Pagers
o Standard navigation keys (up arrow, down arrow, Home, End,

etc.) will also often work!

o The less utility has many more options and customizations
of which you can take advantage.

o Where to look:
 http://www.thegeekstuff.com/2010/02/unix-less-command-10-tips-

for-effective-navigation/

 At the command line...

man less

less --help | less

http://www.thegeekstuff.com/2010/02/unix-less-command-10-tips-for-effective-navigation/

Linux and Project Tips

• I/O redirection

o Three I/O streams

 Standard input (file descriptor: 0)

 Standard output (file descriptor: 1)

 Standard error (file descriptor: 2)

o Examples:

 Standard output into file (overwrite): [command] > file.txt

 Standard output into file (append): [command] >> file.txt

 Standard error into file (overwrite): [command] 2> file.txt

Linux and Project Tips

o More redirection examples:

 Standard output into file (overwrite), with standard error
into standard output:

[command] > file.txt 2>&1

 Standard output and error into separate files:

[command] 1> output.txt 2>> error.log

o Pipes – let the output of one command be input to the next:

tail -300 /var/log/auth.log | grep Invalid | less

 This allows for better management of output.

 It is a form of redirection that can be combined with the previous

Linux and Project Tips

• Other tips...

o Tab completion: Type in part of an identifier, press TAB for completion

o Use the ᐃ (up) and ᐁ (down) arrows to get to commands in your recent
CLI history

o Remember key combos for command line:

 Ctrl+A start of line

 Ctrl+E end of line

 Ctrl+U delete everything before cursor

 Ctrl+K delete everything after cursor

 Ctrl plus L/R arrow  move cursor one word at a time

o Do not forget sudo, especially when editing files. nano will not tell you
that you lack permissions until you try to save!

Linux and Project Tips

• Final project tips...
o Assess project needs...

 Beginning state: End of Project 1

 Ending state: After project script is run

 This may include making an inventory of which files are changed,
including their start and end states.

o Plan for incremental development with repeated testing.
 Start from a known state – i.e., end of Project 1 – with snapshot.

 Write a little bit of script, and perform test run. Rinse and repeat until
you get that little part working right.

 This helps you to minimize amount of (potentially confusing) error
output, on any particular test run.

Linux and Project Tips

• Final project tips...

o Design for elegance.

 Formatting should look nice and readable. White space is your friend!

 Use clear variable names.

 When your code is doing something less than obvious, add comments.

o Design for easy adaptability.

 The good thing about scripts, like other code, is that you can use
sophisticated coding structures to accomplish a lot in fewer lines...

 ...as well as substantially changing results with only minimal changes to
actual code.

Linux and Project Tips

 Easy adaptability: Consider the following example. Let's say that we want
to fill a text file with times tables for the factors 5 and 6, like so:

TABLES

1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
1 * 4 = 4
1 * 5 = 5
1 * 6 = 6

2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8
2 * 5 = 10
2 * 6 = 12

3 * 1 = 3

3 * 2 = 6

3 * 3 = 9

3 * 4 = 12

3 * 5 = 15

3 * 6 = 18

4 * 1 = 4

4 * 2 = 8

4 * 3 = 12

4 * 4 = 16

4 * 5 = 20

4 * 6 = 24

5 * 1 = 5

5 * 2 = 10

5 * 3 = 15

5 * 4 = 20

5 * 5 = 25

5 * 6 = 30

Linux and Project Tips

 The naïve way: The code and projected output are tightly coupled

echo "TABLES" > times_tables.txt

echo "" >> times_tables.txt

echo "1 * 1 = 1" >> times_tables.txt
echo "1 * 2 = 2" >> times_tables.txt
echo "1 * 3 = 3" >> times_tables.txt
echo "1 * 4 = 4" >> times_tables.txt
echo "1 * 5 = 5" >> times_tables.txt
echo "1 * 6 = 6" >> times_tables.txt

echo "" >> times_tables.txt

echo "2 * 1 = 2" >> times_tables.txt
...

Linux and Project Tips

 The naïve way : This may produce the output desired, but only
for the values in question – 5 and 6

What if you want to use different values?

Then, you have to write a lot more code!

Even with copying and pasting, it will still be a lot of work.

For this project, what if we suddenly wanted to use a different
nomenclature for host names? Would you want to rewrite a lot of
code for editing the /etc/hosts file?

Let's look at a better way....

Linux and Project Tips

 A better way : The code and projected output are de-coupled

#! /bin/bash

first=5
second=6

echo "TABLES" > times_tables.txt
echo "" >> times_tables.txt

for i in $(seq 1 $first)
do

for j in $(seq 1 $second)
do

echo "$i * $j = $((i*j))" >> times_tables.txt
done
echo >> times_tables.txt

done

• If we want to choose numbers

other than 5 and 6, then we need

only change these two lines.

• The rest of the code, completely

unchanged, will still give the

correct output!

