
Linux and Project Tips

• Pagers

o These are utilities that allow you do view (potentially) long
text files, one screen at a time.

o Text editors like nano can be used for viewing text files, but
are really not built for that purpose.

o Learn to use a pager like less

 Enter and Control-P To move forward or backward,
respectively, by one line

 Space and Control-B Forward or backward by one screen

 q To quit

Linux and Project Tips

• Pagers
o Standard navigation keys (up arrow, down arrow, Home, End,

etc.) will also often work!

o The less utility has many more options and customizations
of which you can take advantage.

o Where to look:
 http://www.thegeekstuff.com/2010/02/unix-less-command-10-tips-

for-effective-navigation/

 At the command line...

man less

less --help | less

http://www.thegeekstuff.com/2010/02/unix-less-command-10-tips-for-effective-navigation/

Linux and Project Tips

• I/O redirection

o Three I/O streams

 Standard input (file descriptor: 0)

 Standard output (file descriptor: 1)

 Standard error (file descriptor: 2)

o Examples:

 Standard output into file (overwrite): [command] > file.txt

 Standard output into file (append): [command] >> file.txt

 Standard error into file (overwrite): [command] 2> file.txt

Linux and Project Tips

o More redirection examples:

 Standard output into file (overwrite), with standard error
into standard output:

[command] > file.txt 2>&1

 Standard output and error into separate files:

[command] 1> output.txt 2>> error.log

o Pipes – let the output of one command be input to the next:

tail -300 /var/log/auth.log | grep Invalid | less

 This allows for better management of output.

 It is a form of redirection that can be combined with the previous

Linux and Project Tips

• Other tips...

o Tab completion: Type in part of an identifier, press TAB for completion

o Use the ᐃ (up) and ᐁ (down) arrows to get to commands in your recent
CLI history

o Remember key combos for command line:

 Ctrl+A start of line

 Ctrl+E end of line

 Ctrl+U delete everything before cursor

 Ctrl+K delete everything after cursor

 Ctrl plus L/R arrow move cursor one word at a time

o Do not forget sudo, especially when editing files. nano will not tell you
that you lack permissions until you try to save!

Linux and Project Tips

• Final project tips...
o Assess project needs...

 Beginning state: End of Project 1

 Ending state: After project script is run

 This may include making an inventory of which files are changed,
including their start and end states.

o Plan for incremental development with repeated testing.
 Start from a known state – i.e., end of Project 1 – with snapshot.

 Write a little bit of script, and perform test run. Rinse and repeat until
you get that little part working right.

 This helps you to minimize amount of (potentially confusing) error
output, on any particular test run.

Linux and Project Tips

• Final project tips...

o Design for elegance.

 Formatting should look nice and readable. White space is your friend!

 Use clear variable names.

 When your code is doing something less than obvious, add comments.

o Design for easy adaptability.

 The good thing about scripts, like other code, is that you can use
sophisticated coding structures to accomplish a lot in fewer lines...

 ...as well as substantially changing results with only minimal changes to
actual code.

Linux and Project Tips

 Easy adaptability: Consider the following example. Let's say that we want
to fill a text file with times tables for the factors 5 and 6, like so:

TABLES

1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
1 * 4 = 4
1 * 5 = 5
1 * 6 = 6

2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8
2 * 5 = 10
2 * 6 = 12

3 * 1 = 3

3 * 2 = 6

3 * 3 = 9

3 * 4 = 12

3 * 5 = 15

3 * 6 = 18

4 * 1 = 4

4 * 2 = 8

4 * 3 = 12

4 * 4 = 16

4 * 5 = 20

4 * 6 = 24

5 * 1 = 5

5 * 2 = 10

5 * 3 = 15

5 * 4 = 20

5 * 5 = 25

5 * 6 = 30

Linux and Project Tips

 The naïve way: The code and projected output are tightly coupled

echo "TABLES" > times_tables.txt

echo "" >> times_tables.txt

echo "1 * 1 = 1" >> times_tables.txt
echo "1 * 2 = 2" >> times_tables.txt
echo "1 * 3 = 3" >> times_tables.txt
echo "1 * 4 = 4" >> times_tables.txt
echo "1 * 5 = 5" >> times_tables.txt
echo "1 * 6 = 6" >> times_tables.txt

echo "" >> times_tables.txt

echo "2 * 1 = 2" >> times_tables.txt
...

Linux and Project Tips

 The naïve way : This may produce the output desired, but only
for the values in question – 5 and 6

What if you want to use different values?

Then, you have to write a lot more code!

Even with copying and pasting, it will still be a lot of work.

For this project, what if we suddenly wanted to use a different
nomenclature for host names? Would you want to rewrite a lot of
code for editing the /etc/hosts file?

Let's look at a better way....

Linux and Project Tips

 A better way : The code and projected output are de-coupled

#! /bin/bash

first=5
second=6

echo "TABLES" > times_tables.txt
echo "" >> times_tables.txt

for i in $(seq 1 $first)
do

for j in $(seq 1 $second)
do

echo "$i * $j = $((i*j))" >> times_tables.txt
done
echo >> times_tables.txt

done

• If we want to choose numbers

other than 5 and 6, then we need

only change these two lines.

• The rest of the code, completely

unchanged, will still give the

correct output!

