
String Data

• In computing, much data is plain text, so you will be

dealing with strings. A "string" is a sequence of zero or
more characters -- though usually 1+ characters

• You will use strings often, in different ways:
➢ Printing as output

➢ Fetching as input

➢ Comparing

➢ Reversing

➢ Converting to/from other types

• Work and practice to become comfortable with this type

and its many uses

DRAFT

uppercase letters
lowercase letters
punctuation
digits
special symbols
control characters

A, B, C, …
a, b, c, …
period, semi-colon, …
0, 1, 2, …
&, |, \, …
carriage return, tab, ...

Characters

• The ASCII character set is older and smaller (8-bit) than
Unicode, but is still quite popular (in C programs)

• The ASCII characters are a subset of the Unicode character set,
including:

• See, for example, http://www.asciitable.com

Characters

• Each character, however, will correspond to an integer value in
some character set, and there are methods to perform
conversions.

• The following example uses Python based methods

➢ Integer to character: chr

➢ Example: chr(97) → a

➢ Character to integer: ord

➢ Example: ord('a') → 97

• This can be useful when you want to do arithmetic with
characters, for example.

Character Sets

• A character set is an ordered list of characters, with each character

corresponding to a unique number

• Much software today uses the Unicode character set

• The Unicode character set uses sixteen bits per character, allowing for

65,536 (2^16) unique characters

o Unicode character values are often expressed as quartets of hex digits (4 hex digits

equating to 16 bits), such as Θ (Char #920, or 0398 in hex)

o It is an international character set, containing symbols and characters from many

world languages

o Obviously, this is much more expansive than the ASCII character set!

• Reference: https://unicode-table.com/en/

Character Encodings

• A character encoding, in contrast, deals with how characters

(within a set) are to be represented in other, non-character

forms: numerical, electrical, etc..

• For example, in computing, all data is encoded as bytes, which

are made of bits : ones and zeroes

• A character encoding will entail

o a sequence of bits

o for each character

o within some character set

Character Encodings

• An encoding for just ASCII characters would pretty simple,

because char values are limited to zero through 127, which

requires only 7 bits (i.e., no more than 1 byte) per character

• For larger sets of characters, more bits would be needed.

• There are some other character encodings, more expansive

than ASCII but still representable with 1 byte per character,

such as ISO-8859-1 (a.k.a., Latin-1)

• Latin-1 is "ASCII-based" but includes a wider range of

characters, such as accented vowels

Character Encodings

• An encoding for just ASCII characters would pretty simple,

because char values are limited to zero through 127, which

requires only 7 bits (i.e., no more than 1 byte) per character

• For larger sets of characters, more bits would be needed.

• There are some other character encodings, more expansive

than ASCII but still representable with 1 byte per character,

such as ISO-8859-1 (a.k.a., Latin-1)

• Latin-1 is "ASCII-based" but includes a wider range of

characters, such as accented vowels

Character Encodings

• An encoding for the Unicode character set would, in theory, entail

two bytes (16 bits) per character.

• However, that could end up consuming space in memory, when

frequently-used characters end up requiring the same space as

rarely-used characters

• Also, if a character has a low numerical value, then many of its

leading bits would be all zeroes (to make up the whole 16 bits)

• Fortunately, however, a character encoding -- the concrete

representation of characters from a set -- can be designed

intelligently

Character Encodings

• The most popular (currently) encoding for the Unicode character

set is UTF-8

• In UTF-8, a character is represented using from one to four bytes

• For any particular character, some of its leading bits will signal

whether it is going to take up one, two, three, or four bytes

o Characters zero through 127 are 1 byte: 0xxxxxxx

o Chars 128 through 2047 are 2 bytes: 110xxxxx 10xxxxxx

• This allows for more efficient usage of space for storing characters

as textual data

Character Encodings

• The catch is that one must be mindful, to some extent, about

which encoding is being used to...

o Write the text to storage as bytes

o Read the bytes from storage as text

o (Here, consider "write" and "read" as roughly analogous to "save" and

"open" -- in that they involve operations to and from disk)

• There are usually default encodings (within a program) for

both writing and reading textual data

• These may be subject to user preference, to some extent

A String A String
Syntax
Error

Escape Sequences

• What if we want to include the quote character itself?

• The following line would confuse the interpreter because it would
interpret the two pairs of quotes as two strings and the text
between the strings as a syntax error:

print ("I said "Hello" to you.")

• One option would be to replace the beginning and ending double-
quote symbols with single-quotes:

print ('I said "Hello" to you.')

• The reverse would also be valid

print ("I said 'Hello' to you.")

Escape Sequence

\t

\n

\r

\"

\'

\\

Meaning

tab

newline

carriage return

double quote

single quote

backslash

Escape Sequences

• Another option is to use escape sequences, which are character

combinations that have a special meaning within a string

• Some Escape Sequences:

Example:

print ("Hello,\n\tworld")

Hello,

world

Understanding and Working With Data

• No matter which route you take in the IT field, you will be

dealing with data, in some form

• You can go with this definition for now: Data are pieces of

information about the real world...

o That are gathered and maintained -- as well as...

o Made expressible and readable in some form(at) or another

o For one or more purposes:

▪ Knowledge

▪ Reporting

• There are many kinds of data....

▪ Analysis

▪ Interpretation

▪ Decision-making

▪ Problem-solving!

Numeric Data

• First, we have two type of real numbers:

o Integers are whole numbers (No fractional component):

7, -358, 0, -10, 12398

o Decimals (or "floating-point") numbers do have a fractional
component: 7.6, -35.8, -1.09

• A complex number has an imaginary component.

o In other words, some non-zero multiple of the constant i
o We define i as the square root of -1
o We call i "imaginary" because no two real numbers can be squared to

produce a negative result

Boolean Data

• A boolean datum (singular of "data") can have either of

two possible values: True or False

• This is applicable to many either/or scenarios:

o Yes or No

o 1 or 0

o Open or Closed

o Up or Down

o On or OffA

EMR, and The Science Behind It...

• The behavior of fiber optic cabling is based upon the transmission
of electromagnetic radiation (EMR):

o What is EMR?

o What are some technologies that make use of it?

▪ Radios

▪ Microwave Ovens

▪ X-Ray machines

• You will hear the term "light" used much more generally to refer to

EMR – versus our more common definition of visible light.

• These varieties of EMR are all located on the electromagnetic
spectrum.

The EM Spectrum

Video: https://www.youtube.com/watch?v=cfXzwh3KadE

By Katarina Stevanovic (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

The EM Spectrum

• EMR is generally conceptualized as waves – cyclic variations about

a "center", in which energy is transferred. (In this case, the energy

comes from various forms of EM activity.)

• To envision this, imagine a
pendulum swinging to and fro...

o With a pencil lead at the lowest point

o In constant contact with paper

• If the paper is stationary, all the

marks will remain within a single,

one-dimensional space.

The EM Spectrum

• However, if the paper – here being

of indefinite length – is moving...

o in one direction

o at a constant speed

o perpendicular to the pendulum's

plane of motion

• ...then you will see a graph of the

pendulum's position, relative to

the center, over time

• In other words, a wave

The EM Spectrum

• A wave – of EM radiation or another type
– will feature a number of properties:

o Amplitude (A): The height of a wave, from
the center. Unit: meters.

o Wavelength (λ): The distance between two
analogous points on the wave graph. Unit:
meters.

o Frequency (f): The number of waves passing
a given point during a given time. Unit: Hertz
or s-1

o Wave speed (v): wavelength multiplied by
frequency. Unit: m*s-1 or m/s

Amplitude

Wavelength

The EM Spectrum

• We will encounter rather large and small numbers, that

would normally have a lot of zeros.

• This would quickly become confusing, so we use a
method called scientific notation to simplify this problem.

o 300000000 = 3x108

o .0000000000000000000000602 = 6.02*10-23

o In computing context, these may be expressed as 3e8 and

6.02e-23, respectively

o We have prefixes for the different exponents of 10...

The EM Spectrum

• In a vacuum, light (i.e., electromagnetic radiation) travels at a
speed of 3x108 m/s (or m*s-1).

• Recall: v = f * λ. Therefore, if you know a signal's frequency, then

you can calculate its wavelength by dividing the speed of light (c) by

the frequency. λ = c / f

• Consider WBZ, a Boston radio station broadcasting at a

frequency of 1030 kHz – or 1.03 Mhz:

λ =
3.00 x 108 m*s-1

1.03 x 106 s-1

2

λ =
3.00 x 108 m*s-1

1.03 x 106 s-1

The EM Spectrum

λ =
3.00 x 108 m*s-1

1.03 x 106 s-1

2

λ =
3.00 x 102 m

1.03
λ ≈ 2.91 x 102 m

• In doing this, it is important to keep track of your units, including

which ones combine or cancel out in the arithmetic.

• Understanding these concepts will be helpful not only for this

chapter but also for subsequent chapters, such as wireless

networking, which also uses EMR

The EM Spectrum

