
What is a program?

• It consists of two components:
o Data (numbers, characters, true/false)

o Steps

• A program goes through a number of steps with
pieces of data to achieve a result:
o Printing text to screen

o Collecting information

o Performing calculations

• Example: Long Division

DRAFT

Programming Languages

• Computer programmers write programs for computers
using one or more programming languages

• Some languages are better for one type of program or
one style of user interface than for others

• You may have heard of some programming languages:
Basic, Lisp, C/C++, Java, Python, Assembly Language, and
Others

"Hello, World" Versions
• Java:

public class Hello {

public static void main(String[] args) {

System.out.println("Hello World");

}

}

• Basic: 10 PRINT "HELLO WORLD"

• Fortran: PROGRAM HELLOWORLD
10 FORMAT (1X,11HHELLO WORLD)

WRITE(6,10)

END "HELLO WORLD"

• Python: print ("Hello World")

• C:
#include <stdio.h>

#include <stdlib.h>

int main(void)

{

printf("Hello, world\n");

return EXIT_SUCCESS;

}

• Scheme:
(display "Hello, World!")

(newline)

Source: http://c2.com/cgi/wiki?HelloWorldInManyProgrammingLanguages

Programming Languages

•A programming language specifies the words and symbols

that we can use to write a program

•A programming language employs a set of rules that

dictate how the words and symbols can be put together to

form valid program statements

•A programming language has both syntax and semantics

Syntax and Semantics

• The syntax rules of a language define how we can put together
symbols, reserved words, and identifiers to make a valid program

• The semantics of a program statement define what that statement
means (its purpose or role in a program)

• A program that is syntactically correct is not necessarily logically
(semantically) correct

• A program will always do what we tell it to do, not what we
meant to tell it to do

Program Structure

• In a programming language:

▪ A program is made up of one or more instructions, or
statements, which perform operations upon various pieces of
data

▪ Data may be stored in variables

▪ Related groups of statements may be organized into methods

▪ Related variables and methods may be organized into larger
units, such as classes and modules

Basic Definitions

• Statement: A piece of code representing a complete step in a
program

• Variable: A named space in program memory for storing a piece
of data.

• Method: A named set of instructions that acts upon supplied data
in order to accomplish some goal

• Module, Library, etc.: A body of pre-written code that you can
incorporate into a program

• Class: A way of organizing variables and methods, usually for
modeling a real-life entity

White Space

• Spaces, blank lines, and tabs are called white space

• White space is used to separate words and symbols in a program.
Extra white space is usually ignored, depending on the language

• A valid program can be formatted many ways

• Programs should be formatted to enhance readability, using
consistent indentation

• In some programming languages, like Python, correct use of
indentation is necessary in order to indicate organization of code,
as we will see soon.

Printing

• One of the most basic steps in a simple CLI-based program is
printing text to the screen

• There are a number of variations on this step, some simpler and
some more complex

o Single line of text vs. multiple lines

o Printing with a terminal newline vs. without

o Printing plain strings of text

o ...or other data types

o ...or the results of expressions

Variable Declaration

• A variable is a name for a location in memory

• A variable must be declared by specifying its name and
its initial value (example below uses Python)

name = "Bob" .

body_temp = 98.6 .

light_on = False .

• In some languages (e.g., Java), variables are of a specific
type, but Python is more flexible

total = 55 .

Value Assignment

• An assignment statement gives the variable an actual
value in memory

• The equals sign provides this function

• The expression on the right is evaluated and the result is
stored as the value of the variable on the left

• Any value previously stored in total is overwritten

• Some languages - like Java – will restricted the kinds of
values you can assign to a variable, based on its type

Operators and Operands

• Operand: Can be any element that has some value:

–A literal:

1, -2.5, True, False,

"d", "Hello World"

–A variable:

name, balance, course_title

–The result of a method call:

student.get_name()

Operators and Operands

• Operator: Something that computes a result using

one or more operands:

1 + 2

6 / 3

!lightIsOn

count += 1

5 * 4 == 10 * 2

18 – 6 != 6 - 18

Add +

Subtract -

Multiply *

Divide /

Remainder %

Integer //

(floor)

Division

Exponent **

Expressions

• An expression is a combination of one or more operators and
operands

• Arithmetic expressions compute numeric results and make use of
the arithmetic operators:

• If either or both operands used by an arithmetic operator are floating point
(i.e., decimal), then the result is a floating point

Operator Precedence

• Operands and operators can be combined into complex expressions

result = total + count / maxi - offset

• Operators have a well-defined precedence which determines the order in
which they are evaluated

• Multiplication, division, and remainder are evaluated prior to addition,
subtraction, and string concatenation

• Arithmetic operators with the same precedence are evaluated from left to
right, but parentheses can be used to force the evaluation order

• In fact, arithmetic expressions can be combined with other operators to
create boolean expressions....

Boolean Expressions

• A boolean expression is one that returns either of two

possible values: True or False

• Boolean expressions, like arithmetic ones, use operators,

such as the following equality and relational operators:
== equal to

!= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

• These address questions of ordering , where things can be

consider greater/lesser, coming before/after, etc.

Boolean (relational) Expressions

5 < 7

7 >= 5

x == 98

len(password) >= MIN_LENGTH

ins_prem * months != benefits - deductible

(volume - (1 / ph_value)) * 2 <= 1 / q_factor

a-- * (b / ((c - d) % e)) ==

(b * (c / a) + ((3 % q) + 7)

offer < minimum_bid

grade+1 >= a_grade

t_weight < weight

Logical Operators

• The following logical operators can also be used in

boolean expressions:

not / ! Logical NOT

and / && Logical AND

or / || Logical OR

• They operate on boolean operands and produce boolean

results: True or False

–Logical NOT is a unary operator => one operand

–AND and OR are binary operators => two operands

a
not
a

True False

False True

Logical NOT

• The logical NOT operation is also called logical negation
or logical complement

• If some boolean condition a is True, then not a is

False

• If a is False, then not a is True

• Logical operations can be shown with a truth table

Logical AND and Logical OR

• The logical AND expression

a and b

• is True if both a and b are True, and False otherwise

• The logical OR expression

a or b

• is True if at least one of a or b is True, and False

otherwise

a b a and b a or b

True True True True

True False False True

False True False True

False False False False

Logical Operators

• A truth table shows all possible True - False
combinations of the terms

• Since and and or each have two operands, there are four
possible combinations of conditions a and b

More Boolean Expressions

• NOTE: You should look at these primarily as examples of how

boolean expressions can be combined into more complex ones.

(Python style below!)

5 < 7 or offer < min_bid

7 >= 5 and x == 98

not done and x == 47

not (5 < 7 or offer < MIN) or (7 >= 5 and x == 98)

not (grade >= a_grade) and not (t_weight < weight)

not (len(password) >= MIN) or my_boolean

Reading Input

• Programs generally need input on which to operate

• Specific languages have ways that allow us to get this information

from the user, when writing a command-line application

• It can also be used to halt program execution until the user
presses Enter

• To use it, you will need:

1) The method, code, etc. that gets user input

2) Prompt text (e.g., "Please type your name: "

Reading Input

• The input method will:

1) Print your specified prompt text

2) Wait for the user to press Enter

3) Return the user's input as some type of data -- often a string

(an empty string, if the user entered no text)

• To halt program execution, you can use input prompts without
storing the result.

• This can be useful when you want the program to stop at

certain points

Interactive Applications (CLI)

• An interactive program with a command line interface contains a

sequence of steps to:

– Prompt the user

– Get the user’s responses

– Process the data as input is received (or after)

• Python example:

name = input("Enter name: ")

age = int(input("Enter age: "))

money = float(input("Money: $"))

Flow of Control

• Default order of statement execution is linear: one after
another in sequence

• But, sometimes we need to decide which statements to
execute and/or how many times

• These decisions are based on boolean expressions (or
“conditions”) that evaluate to True or False

• The resulting order of statement execution, according to
these decisions, is called the flow of control

Flow of Control

• We can speak of three forms of flow control:

1. Sequencing is the most basic form of flow control: the

mere execution of steps, in order, one after the other.

2. Branching involves a choice between one or more

potential options for which statement(s) to execute next,

before continuing

3. Repetition involves executing a block of code, over and

over, until reaching a logical stopping point

• By combining these basic types of flow control, you can forge

increasingly complex and sophisticated programs!

Branching - Conditional Structures

• A conditional structure decides which program
statement(s) will be executed next

• We use boolean conditions to make basic decisions as the
program runs.

• Recall the quadratic formula example:

o Check if a = 0 , if b = 0 , etc.

• There are a number of variations on boolean conditional
structures, but these are the most important two:

if

if-else

• An if statement has the following form (example below uses Python
syntax):

if condition:

statement

statement

statement

if is a

reserved

word

The condition must be a

boolean expression. It must

evaluate to either True or False.

If the condition is True (i.e., evaluates to True),

the statements are executed.

If it is False, the statements are skipped.

The if Statement

• An Python example of an if statement:

• First the condition is evaluated -- either the value of sum is

either greater than the value of MAX, or it is not

• If the condition is True, the assignment statement is

executed -- if False, it is not

• The print statement,not being contingent upon sum <

MAX, is always executed next

if sum > MAX:

delta = sum - MAX

print ("The sum is " + str(sum))

The if Statement

• An else clause can be added to an if statement to make an if-else
statement

condition is True => statement-block-1 is executed

condition is False => statement-block-2 is executed

• One or the other will be executed, but not both

if condition:

statement-block-1

else:

statement-block-2

The if-else Statement

• Repetition statements – better known as loops – allow us to

execute code multiple times

• The repetition (like branching) is controlled by boolean
expressions that determine when it ends

• There are two basic kinds of loops:

o Indefinite (while)

o Definite (for)

• The programmer should choose the right kind of loop for

the situation

Repetition Statements

• A while loop has the following form (Python syntax):

• If condition is True, statements are executed

• Then condition is evaluated again, and if it is still True,

statement is executed again

• statements are executed repeatedly until condition

becomes False

while condition:

statement

statement

....

The while Loop

Indeterminate vs Determinate Loops

• A while loop will continue to run until its continuation

condition becomes False.

• In theory, what stops the loop is a result of what happens

during loop execution, so we may not yet know how many

times the loop code should execute, so the while loop is

indeterminate

• Other times, however, we will be able to determine this in

advance – which means we can use a determinate loop

• A for loop has the following syntax:

for variable in collection:

statement

statement

statement

statement

The variable

refers to the current

item being processed

The collection is

the series of objects

being processed

The statements are

executed for the

current item

The for Loop

• An example of a for loop:

• The variable section can be used to declare a variable for

counting

• Like a while loop, the execution is dependent on a

condition (here, implicit)

• Therefore, the body of a for loop will execute 0+ times

for count in range(5):

print (count)

The for Loop

• An example of a for loop:

• The variable section can be used to declare a variable for

counting

• Like a while loop, the execution is dependent on a

condition (here, implicit)

• Therefore, the body of a for loop will execute 0+ times

for count in range(5):

print (count)

The for Loop

Data Structures

• We have two basic structures for organizing many pieces of data:

1. Numbered Sequences : Here, you have a series of elements

in a list (a.k.a., "tuple", "array", etc.), where you can query the

sequence for a single element (or range) according to

positional number.

2. Data Maps : A collection of data pairs, where one half is the

"key" and the other half is the "value". The key is used for

looking up the value . (A.k.a., "dictionary", "hash", etc.)

• Using these more advanced structures, you can organize data in

increasingly sophisticated ways within a program.

Introduction to Arrays - Java example

• We can declare a whole group (called an array) of variables
of a specific type

int[] nums = new int [5];

char[] chars = new char[10];

 You can have arrays of objects, as well

String[] strings = new String[5];

• Note: Those variables in the arrays have not been initialized
yet.

• To assign values to each variable, we can use a for-

loop:
for (int i = 0; i < 5; i++){

nums[i] = some valid integer expression;

}

• A single variable can be selected using an integer

expression or value inside the []:
count = 8;

int result = nums[count];

int otherResult = nums[count * 3 % 5];

Introduction to Arrays - Java example

Arrays and Initializer Lists

• An array can be defined and initialized with an an initializer list (an

array literal):

char [] vowels = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’};

• Java allocates right amount of space based upon the list size

• An initializer list can be used only when the array is first declared, as

above

• Because of Python's dynamic typing, this would be a non-issue:

vals = ('a', 'e', 'i', 'o', 'u')

vals = (1, 2, 3, 4, 5)

vals = ("hello", "world", "goodbye")

...and so forth

Arrays and Loops

• Now we can coordinate the processing of one variable with

the execution of one pass through a loop using an index

variable, e.g:
int MAX = 5; // symbolic constant

int[] nums = new int[MAX];

for (int i = 0; i < MAX; i++) {

// use i as array index variable

Java statements using nums[i];

}

• Python equivalent: for i in nums:

statements using nums[i]

Arrays and Loops
• Arrays are objects (only without a class)

• Each array has an attribute “length” that we can access to

get the length of that array, e.g., nums.length == MAX:

int MAX = 5; // symbolic constant

int [] nums = new int [MAX];

for (int i = 0; i < nums.length; i++) {

// use i as array index variable

in Java statements using nums[i];

}

• Python equivalent: len (nums)

44

Dictionaries

• In addition to sequences, another useful way to
organize data is in terms of key-value pairings

• This is the case with a dictionary, where data is
organized like so:

key1  value1

key2  value2

key3  value3 ...

• You can then use a specific key to retrieve a
particular value from the dictionary.

45

Creating Dictionaries

key1  value1

key2  value2...
• Syntax:

variable = { first_key : first_value,
second_key : second_value, ...
last_key : last_value }

• Keys must be of an immutable type, but values can be of
any type

• Each key in the dictionary must be unique; otherwise,
duplicated keys would create ambiguity

46

Using Dictionaries
• Let’s create a dictionary:

info = { “name” : “John Doe”,
“school” : “UMB”,
“ID” : 12345,
“GPA” : 3.7 }

• Now, we can…

Fetch a value by key:

print(“My name is: ” + info[“name”])

See if key exists:

print(“Has major: ” + str(“major” in info))

My name is: John Doe

Has major: False

47

Using Dictionaries
“name” “John Doe”
“school” “UMB”
“ID” 12345
“GPA” 3.7

Add a new entry (key-value pair):

info[“major”] = “Comp. Sci.”

Replace an entry:

info[“major”] = “Art”

info

“name” “John Doe”
“school” “UMB”
“ID” 12345
“GPA” 3.7
“major” “Comp. Sci.”

“name” “John Doe”
“school” “UMB”
“ID” 12345
“GPA” 3.7
“major” “Art”

48

Using Dictionaries

Delete an entry by key:

del info[“major”]

Fetch a value by key (with default):

print(“Major:” info.get(“major”, “Undeclared”)

Major: Undeclared

info
“name” “John Doe”
“school” “UMB”
“ID” 12345
“GPA” 3.7
“major” “Art”

“name” “John Doe”
“school” “UMB”
“ID” 12345
“GPA” 3.7

