
1

Loops –While and For

• Repetition Statements

• While

• For

• Reading for this Lecture:

• Dawson, Chapter 3

• Dawson, Chapter 4 (until p. 93)

• http://introcs.cs.princeton.edu/python/13flow

2

Repetition Statements

• Repetition statements – better known as loops – allow
us to execute code multiple times

• The repetition is controlled by boolean expressions

• Python has two kinds of loops:

• while

• for

• The programmer should choose the right kind of loop
for the situation

3

The while Loop

• A while loop has the following syntax:

• If condition is True, statements are executed

• Then condition is evaluated again, and if it is
still True, statement is executed again

• statements are executed repeatedly until
condition becomes False

while condition:

statement

statement

....

4

The while Loop

• An example of a while loop:

• If the condition of a while loop is False to
begin with, the statements are never executed

• Therefore, the body of a while loop will
execute 0+ times

done = False

while not done:

body of loop statements

if some condition:

done = True

5

The while Loop

• Let's look at some examples of loop processing

• A loop can be used to maintain a running sum (for

example, a dice game)

• You can have a flag or signal (called a sentinel

value) that represents the end of input (not data!)

and stops the loop

• A loop can also be used for input validation,

making a program more robust

See sum_loop.py

See sum_loop_alt.py

See loop_validate.py and exclusive_network.py

6

Infinite Loops

• Executing statements must eventually make

condition False

• If not, you have an infinite loop, which will run until

the user interrupts the program

• This is a common logical error

• You should always double check the logic of your

program to ensure that your loops will eventually

terminate

while condition:

statement

statement

....

See infinite_loop.py

7

Infinite Loops

• An example of an infinite loop:

• This loop will go on forever (in theory, at

least!) until the user externally interrupts the

program

done = False

while not done:

print (“Whiling away the time ...”)
Note: no update for the value of done!!

8

Nested Loops

• As with if statements, you can have loops

inside of loops!

• For each iteration of the outer loop, the inner

loop runs through completely

• How many times

will the string

"Here" be

printed?

count1 = 1

while count1 <= 10:

count2 = 1

while count2 <= 20:

print ("Here")

count2 += 1

count1 += 1

10 * 20 = 200

See nested_loops.py

9

Indeterminate vs Determinate Loops

• A while loop will continue to run until its

continuation condition becomes False.

• In theory, what stops the loop is a result of

what happens during loop execution, so we

may not yet know how many times the loop

code should execute, so the while loop is

indeterminate

• Other times, however, we will be able to

determine this in advance – which means we

can use a determinate loop

10

The for Loop

•A for loop has the following syntax:

for variable in collection:

statement

statement

statement

statement

The variable

refers to the current

item being processed

The collection is

the series of objects

being processed

The statements are

executed for the

current item

11

The for Loop
•A for loop – a determinate loop – is

functionally equivalent to the following while

loop structure:

size = len(collection)

counter = 0

while counter < size:

variable = collection[counter]

statement

statement

statement

counter += 1

12

The for Loop

•An example of a for loop:

•The variable section can be used to declare a

variable for counting

•Like a while loop, the execution is dependent

on a condition (here, implicit)

•Therefore, the body of a for loop will execute

0+ times

for count in range(5):

print (count)

13

The for Loop

•You can even count by multiples:

•A for loop is well suited for executing the

body a specific number of times that can be

calculated or determined in advance

•See counter.py

•See loopy_string.py

Prints by fives

for i in range(0, 50, 5):

print(i, end=" ")

file://///Users/development/Documents/umbcs_materials/public_html/teaching/common/lecture/python/intro/examples/chap05/Multiples.java
file://///Users/development/Documents/umbcs_materials/public_html/teaching/common/lecture/python/intro/examples/chap05/Stars.java

