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Loops –While and For

• Repetition Statements

• While

• For

• Reading for this Lecture:

• Dawson, Chapter 3

• Dawson, Chapter 4 (until p. 93)

• http://introcs.cs.princeton.edu/python/13flow
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Repetition Statements

• Repetition statements – better known as loops – allow 
us to execute code multiple times

• The repetition is controlled by boolean expressions

• Python has two kinds of loops:

• while

• for

• The programmer should choose the right kind of loop 
for the situation
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The while Loop

• A while loop has the following syntax:

• If condition is True, statements are executed

• Then condition is evaluated again, and if it is 
still True, statement is executed again

• statements are executed repeatedly until 
condition becomes False

while condition:

statement

statement

....
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The while Loop

• An example of a while loop:

• If the condition of a while loop is False to 
begin with, the statements are never executed

• Therefore, the body of a while loop will 
execute 0+ times

done = False

while not done:

body of loop statements

if some condition:

done = True
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The while Loop

• Let's look at some examples of loop processing

• A loop can be used to maintain a running sum (for 

example, a dice game)

• You can have a flag or signal (called a sentinel 

value) that represents the end of input (not data!) 

and stops the loop

• A loop can also be used for input validation, 

making a program more robust

See sum_loop.py

See sum_loop_alt.py

See loop_validate.py and exclusive_network.py
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Infinite Loops

• Executing statements must eventually make 

condition False

• If not, you have an infinite loop, which will run until 

the user interrupts the program

• This is a common logical error

• You should always double check the logic of your 

program to ensure that your loops will eventually 

terminate

while condition:

statement

statement

....

See infinite_loop.py
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Infinite Loops

• An example of an infinite loop:

• This loop will go on forever (in theory, at 

least!) until the user externally interrupts the 

program

done = False

while not done:

print (“Whiling away the time ...”)
# Note: no update for the value of done!!
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Nested Loops

• As with if statements, you can have loops 

inside of loops!

• For each iteration of the outer loop, the inner 

loop runs through completely

• How many times 

will the string 

"Here" be 

printed?

count1 = 1

while count1 <= 10:

count2 = 1

while count2 <= 20:

print ("Here")

count2 += 1

count1 += 1

10 * 20 = 200

See nested_loops.py
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Indeterminate vs Determinate Loops

• A while loop will continue to run until its 

continuation condition becomes False.

• In theory, what stops the loop is a result of 

what happens during loop execution, so we 

may not yet know how many times the loop 

code should execute, so the while loop is 

indeterminate

• Other times, however, we will be able to 

determine this in advance – which means we 

can use a determinate loop
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The for Loop

•A for loop has the following syntax:

for variable in collection:

statement

statement

statement

statement

The variable

refers to the current

item being processed

The collection is

the series of objects

being processed

The statements are 

executed for the 

current item
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The for Loop
•A for loop – a determinate loop – is 

functionally equivalent to the following while

loop structure:

size = len(collection)

counter = 0

while counter < size:

variable = collection[counter]

statement

statement

statement

counter += 1
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The for Loop

•An example of a for loop:

•The variable section can be used to declare a

variable for counting

•Like a while loop, the execution is dependent 

on a condition (here, implicit)

•Therefore, the body of a for loop will execute 

0+ times

for count in range(5):

print (count)
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The for Loop

•You can even count by multiples:

•A for loop is well suited for executing the  

body a specific number of times that can be 

calculated or determined in advance

•See counter.py

•See loopy_string.py

# Prints by fives

for i in range(0, 50, 5):

print(i, end=" ")

file://///Users/development/Documents/umbcs_materials/public_html/teaching/common/lecture/python/intro/examples/chap05/Multiples.java
file://///Users/development/Documents/umbcs_materials/public_html/teaching/common/lecture/python/intro/examples/chap05/Stars.java

