
Program Planning, Data

Comparisons, Strings

• Program Planning

• Data Comparisons

• Strings

• Reading for this class:

Dawson, Chapter 3 (p. 80 to end) and 4

2

Program Planning

• When you write your first programs, there may not be

much planning involved because they are so simple.

You just sit down and start typing!

• However, as you start to tackle more complex tasks, it

will become ever more import to think about the

problem and do some planning first.

• Doing so can make your job easier and save you lots

of time and effort, later on.

3

Program Planning

• Remember, a program is ultimately a series of steps (also

known as an “algorithm”) for accomplishing a task

• One important program-planning skill to develop is how to

write and use pseudocode, which is essentially the steps of an

algorithm written in human language instead of code.

• This is helpful on two levels:

1. It gets you to thinking about the direction you want your program to

take and encourages you to think things through before getting

started.

2. You will get into the habit of thinking about computations in a more

abstract and conceptual manner – instead of thinking in a specific

programming language

4

Pseudocode Example:

Computing a Sum
As pseudocode:

Start with a sum of zero

While the sum is less than or equal to 100

Get a new integer value from the user

Add the new value to the sum

Print the current sum

Print the final sum

As Python code:

sum = 0
while sum <= 100:

new_value = int(input("Type an integer: "))
sum += new_value
print ("The sum is currently:", sum)

print (“\nThe sum is:", sum)

5

Program Planning

• When we, as humans, carry out a task, our minds tend to leave

many aspects of the process implicit. We take them for

granted and do not think of them.

• In fact, these tasks tend to involve numerous smaller steps –
sometimes tiny ones – that do not immediately occur to us

• We do not have to think of them explicitly

• In programming, however, you must be explicit

• When you start writing a program, you are likely thinking in

terms of the program’s behavior when running

• As such, your steps may be rather wide and general

6

Program Planning

• As such, you must take your initial wide and general steps and

break them down into the smaller steps that make them up

• This is called stepwise refinement. The basic process is to

look at a step and see if it easily can be translated into a single

line of code.

• If not, you can refine the step some more to get a set of smaller

steps. It is largely about learning to “think like a computer”.

• See the textbook example, pages 81 to 84. It shows multiple

steps of the program planning process

7

Comparing Data

• When comparing data using boolean expressions, it's

important to understand the peculiarities of certain

data types

• Let's examine some key situations:

– Comparing double/float values for equality

– Comparing characters

– Comparing strings (alphabetical order)

8

Comparing Decimals

• The equality operator (==) is not always the best
choice for comparing two decimals (float type)

• They are equal only if their underlying binary
representations match exactly

• However, in real life, it is rarely necessary for two
figures to be absolutely equal

• Two decimals may be "close enough," even if they
aren't exactly equal, yet computations often result in
slight differences that may be irrelevant

9

How To Compare Decimals

• Decide on a "maximum tolerable inequality":

• To determine the equality of two decimals, use the
following technique:

• If the absolute value of the difference is less than the
tolerance, the if-condition will be true, and the print
statement will execute. (The idea here is "equal
enough")

• The size of the tolerance will differ, depending on the
problem at hand.

if abs(d1 - d2) < TOLERANCE:
print ("Essentially equal")

TOLERANCE = 0.000001

10

Comparing Characters

• As we've discussed, Python uses the Unicode
character set

• Each character has a particular numeric value,
which creates an ordering of characters

• Thus, we can use relational operators on
character data

• For example, 'A' < 'J' == True
because 'A' has the smaller numeric value in
the Unicode set

11

Comparing Characters
• In Unicode, the digit characters (0-9) are contiguous

and in order of their numerical value

• Likewise, the uppercase letters (A-Z) and lowercase
letters (a-z) are contiguous and in alphabetical order

• Notice that uppercase precedes lowercase!

Characters Unicode Values

0 – 9 48 through 57

A – Z 65 through 90

a – z 97 through 122

12

Comparing Characters

• Therefore, we can determine whether a character

is a digit, a letter, etc.

if character >= '0' and character <= '9':

print ("Yes, it's a digit!")

elif ((character >= 'A' and character <= 'Z') or \
(character >= 'a' and character <= 'z')):

print ("It's a letter!")

else:

print ("Something else entirely!")

13

Comparing Strings

• We can also use the == operator to determine if the values of
two strings are identical (character by character):

• This also applies to the other equality and relational operators:
• !=
• <
• <=
• >
• >=

if name1 == name2:
print ("Same name")

name1 = "Bill"
name2 = "Bob“
name1 == name2

False
name1 <= name2

True
name2 > name1

True

14

Comparing Strings

if name1 < name2:
print (name1 + "comes first")

else:
if name1 == name2:

print ("Same name")
else:

print (name2 + "comes first")

• Results may sometimes surprise you!

• The comparison is based on characters'

numeric values, so it is called a

lexicographic ordering

15

Lexicographic Ordering

• Lexicographic ordering is not strictly alphabetical

• For example, the string "Great" comes before the

string "fantastic". In Unicode, the uppercase

letters have lower values than lowercase, so 'G' is

technically less than 'f'

• Also, short strings come before longer strings with the

same prefix

• "book" comes before "bookcase", but

"Bookcase" comes before both!

16

Using Strings

• Because strings will be a huge part of your

programming experience, it’s important to become
more familiar and comfortable with their workings.

• Moreover, this is important preparation for other

kinds of sequences.

• In particular, the techniques described and

demonstrated here are ones that you should practice

and remember

See message_analyzer.py

17

Using Strings

• The len() function – gives you the length of a

sequence, such as a string:
message = “hello”
print (“The length of the string is”, len (message))
• The in operator. In a for loop, this is used to provide

the items in a sequence. However, it can also tell you if

a sequence does (True) or does not (False) contain a

particular item:
print(“The string contains an ‘e’:”, ‘e’ in message)
print(“The string contains an ‘A’:”, ‘A’ in message)
OUTPUT:
The string contains an ‘e’: True
The string contains an ‘A’: False

18

Indexing Strings

• Because a string is a sequence, characters can be

accessed by position numbers

• A string’s characters are numbered from zero to the

length minus one. Think of it like this:

message = “hello”
0 1 2 3 4 5

message ‘h’ ‘e’ ‘l’ ‘l’ ‘o’

See random_access.py

19

Indexing Strings

message = “hello”
0 1 2 3 4 5

message ‘h’ ‘e’ ‘l’ ‘l’ ‘o’

• To get a the character at a position within a string,

you use the following syntax:

the_string[position]
print(“First character:”, message[0])
print(“Second character:”, message[1])
print(“Last character:”, message[4])
print(“Last character:”, message[len(message)-1])

20

Indexing Strings

• In fact, strings also have negative position numbers:

0 1 2 3 4 5

message ‘h’ ‘e’ ‘l’ ‘l’ ‘o’
-5 -4 -3 -2 -1

• Thus, the following code would also work:
print(“First character:”, message[-5])
print(“Second character:”, message[-4])
print(“Last character:”, message[-1])
OR

print(“First character:”, message[0 - len(message)])

print(“Second character:”, message[1 - len(message)])

21

Slicing Strings

• In addition, you can use indices to get a subsection of

a string, called a slice

0 1 2 3 4 5

message ‘h’ ‘e’ ‘l’ ‘l’ ‘o’
-5 -4 -3 -2 -1

• To get a slice, you use the following syntax:

the_string[start:end]
print(“First two:”, message[0:2])
print(“Middle three:”, message[-4:-1])
print(“Last two:”, message[-2:5])

print(“Last character:”, message[len(message)-1])
See pizza_slicer.py

22

Slicing Strings
• You may notice something about slice syntax. Specifically, we

seem to start with the position of the first character of the slice

but end with the position one greater than the last character

0 1 2 3 4 5

message ‘h’ ‘e’ ‘l’ ‘l’ ‘o’
-5 -4 -3 -2 -1

• start and end indicate the slice boundaries:

the_string[start:end]
print(“Middle three:”, message[1:4])
will print as:

ell

23

String Immutability

• The term “mutable” indicates that something can be changed
or altered – versus “immutable”, which cannot be changed

• Strings are one example of this. A string, once created, is

unchangeable.

• A line of code like message += “ world!” might appear to

change “hello” into “hello world!”
• Actually, a new string is created from the two old ones and

then reassigned to message

• Similarly, message[1:4] is actually a new string created from

message

