
1

Objects and Classes

• Reading for this Lecture:
• Dawson, Chapter 8
• http://introcs.cs.princeton.edu/python/31datatype/
• http://introcs.cs.princeton.edu/python/32class/

• Functions and Modules
Revisited

• Introduction to Classes
• Object Variables and

Object References
• Instantiating Objects
• Using Methods in

Objects

• Class definitions
• Scope of Data

– Instance data
– Local data

• The self Reference

• Encapsulation and
visibility

Objects and Classes

 As you may remember, Python is an object-

oriented programming language

▶ An object is a program entity with state and behaviors

▶ Objects in a program may represent (and model)
real-world entities

▶ All data in a Python program are objects

 Objects belong to classes...

▶ A class can be seen as a blueprint for an object

▶ It represents the object's larger category

▶ It defines the object's attributes and behaviors

 To clarify, consider functions and modules...

Functions

 Recall: A function is a named chunk of code,
representing a program behavior, that does one
or more of these:

▶ Sends back a value, possibly calculating or
generating something first

▶ Performs operations on data

▶ Carries out a set of related commands

 Using functions lets us...

▶ break code up into smaller chunks

▶ keep parts of the program conceptually separate

▶ engage in greater code reuse

Modules

 We can enhance code reuse even more by grouping
functions and constants into modules.

 If there is a function we find ourselves using in multiple
programs, then we can put it into a module with related
functions and constants

 When we want to use it, we simply import the module and
access what we want via the module name.

 We do not have to rewrite the function because it is
already defined within the module, which we can import
into as many other code files as we like.

 For example:

import math

import random

Functions as "messages"

• You can think of a function as a kind of
"message" that you send somewhere:

• To the Python interpreter directly

• To a module

• To an object

• This code...
str_var = "Hello, world!"
print (str_var)

• ...is like saying "Hey, Python interpreter, go
print str_var to the screen!"

Functions as "messages"

• In contrast, this code...
import math
x = math.sqrt(9)

• ...is like saying "Hey, math module, go
calculate the square root of 9 and give it back!"

• This, of course, brings us back to the principle
of abstraction, where we do not concern
ourselves with behind-the-scenes details

• Objects and classes, then, provide us with
another variety of abstraction

7

Introduction to Classes

• A class defines the attributes and functions
(representing the state and behavior) of a
specific type of object

• Normally, we access an object by calling a
function defined by its class

• We may sometimes access object data
directly, via an attribute defined by its class,
but this is discouraged

8

"Classifying" into Classes

• To understand the context of the word "class" in
Python, think about the word "classify"

• A class will "classify" a set of "objects" based on
similar attributes and behaviors

• The furniture in this room can be classified as
"Furniture" class objects because of

common attributes and behaviors they share

• Entities like "Hello, world!" and
"goodbye" are both classified as "str" class

objects – strings of characters

9

Accessing Class Members

• When we create a variable and assign it a value,
we are creating a reference to an object

• The object is what contains the data

• The "reference" is the location of the object in
program memory

• We access an object’s "members" (i.e., functions
and attributes) using the reference variable name
and the "." operator:
object_name = "Hello" #ref. variable

print (object_name.upper()) # upper function

>>> HELLO

10

Example of a Class Definition

• We can draw a diagram of a class to outline
its important features before writing code –
its name, attributes, and methods

BankAccount

+ balance : float

. . .

+ BankAccount (initial : float)

+ deposit(amount : float) : bool

+ withdraw(amount : float) : bool

Class Name

List of its
Variables/Attributes

List of its

Methods/Functions

11

Example of a Class Definition
class BankAccount (object):

the constructor function

def __init__(self, initial):

self.balance = float(initial)

the deposit function

def deposit (self, amount):

if amount > 0:

self.balance += amount

return True

else:

print ("Must be greater than zero!")

return False

rest of code..

12

Example of a Class Definition
class BankAccount (object):

previous...

the withdraw function

def withdraw (self, amount):

if amount > 0:

self.balance -= amount

return amount

else:

print ("Must be greater than zero!")

return False

any additional code..

13

• First, you need the class header line:

class ClassName (object):

• After that, all the class code will be indented relative to
the class header.

• Next you will have your constructor function. This
contains the code that executes when you first create
a new object of this type. Start with the header:

def __init__ (self):

• You may also include some extra parameters:

def __init__ (self, name, number):

• It will at least have the parameter self.

Defining a class

14

• This can be any code you want to execute when the
object is first created.

• It is also where you define the attributes for that type
of object:

def __init__ (self, name, number):

self.name = name

self.number = number

• Here, the constructor establishes that every object of
this type will have the attributes name and number.

• The self. part distinguishes the attribute

Defining a class

15

• In most cases, you will want to define a special string
function for the class.

• This function determines how your type gets
translated to the string type, when you call for a data
conversion on it:

def __str__ (self):
return self.name + ", " + str(self.number)

• If you have a variable my_object, referring to an

object of this type, where the values of name and
number are "John" and 27, then this code...

print (str (my_object))

... will print: John, 27

Defining a class – string conversion

16

• You may also define special rich comparison functions
for the class, corresponding to the standard
comparison and equality operators:

__lt__ -> <
__le__ -> <=
__eq__ -> ==
__ne__ -> !=
__gt__ -> >
__ge__ -> >=

• These functions determine how two objects of this
type are ordered – for example, for sorting.

Defining a class - comparisons

17

• For example, you may decide two objects of that type
should be ordered by their "name" attributes:

def __eq__ (self, other):
return self.name == other.name

def __lt__ (self, other):
return self.name < other.name

• After defining __eq__ and __lt__, you could define

the other four in terms of the previous two. For
example...

def __gt__ (self, other):
return not (self < other or self == other)

• Or, you may choose to do it your own way

Defining a class - comparisons

18

• You can also define other functions for your class:

def my_function (self):

print ("Hello, my name is:", self.name)
print ("And my number is:", self.number)

• Your function must have the parameter self. However,
you can also include others:

def my_function2 (self, day_of_week):

print ("Hello, my name is:", self.name)
print ("And today is:", day_of_week)
return True

Defining a class

19

• Creating a BankAccount object:
my_account = BankAccount(100) # constructor

• Accessing BankAccount methods:

my_money = my_account.balance

print ("My balance is $" + str(my_money))

my_account.deposit(50.0)

print ("My balance is now $", end="")

print (my_account.balance)

• Of course, we could just do this...why don't we?
my_account.balance += 50.0

Creating and Using Objects

20

Prototype for a Class Definition

• We make an attribute/function private when we
want to prevent access to it from code written
outside the class

• Conversely, we let it be public when we want to
allow access from code written outside the class

• balance in the BankAccount class is public

• Normally, we declare attributes to be private and
functions to be public

• We will see some valid exceptions later

21

Creating Objects

• We use the class name, along with parameters, to create
an object

• Creating an object is called instantiation

• An object is an instance of a particular class

• my_account is assigned a reference to an object of type
BankAccount that encapsulates it's data – the balance

my_account = BankAccount(100)

This calls the BankAccount constructor, which

is a special function that initializes the object.

Notice "self" is not a parameter here!

Variable

22

Invoking Functions
• Once an object has been instantiated, we can

use the dot operator to invoke, or call, any of the
object’s functions

success = my_account.deposit(33.45)

• Notice we only supply the balance, not self

• A function call on an object might:

– Ask the object for some information OR

– Ask the object to perform a service OR

– Doing something to the state of the object

• We send the object a message, and we may get
back a reply (as data)

Leveraging OOP

 Classes and objects allow us to
encapsulate data and procedures, useful
for (among other things):

▶ Making code neater and easier to use

▶ Security of object data

▶ Maintaining logical structure

▶ Making program easier to understand

 Example: Address class, later in lecture

24

References
• As mentioned earlier, a variable does not hold the

actual data; instead, it holds a "reference" to the
data object.

• An object reference can be thought of as a
"pointer" to the location of the object in memory

• Rather than dealing with arbitrary address values,
we often depict a reference graphically

balancemy_account

num_1

BankAccount object

"Reference"
(or Pointer)

38

int object

100.0
float object

References

• Because the variable holds the reference, not the
actual object, we can do things like this:

strings = ["", "", "", "", ""]

strings[0] = "foo"

strings[1] = "Hello World"

strings[2] = "To be or not to be, "

strings[3] = ""

strings[4] = (the entire text of Tolstoy's
War and Peace)

• The data sizes are not a problem!

26

Reference Assignment

• When we re-assign a variable, we are
storing a new reference:

if my_account == your_account:
print ("The Same") # no!

your_account = my_account

if my_account == your_account:
print ("The Same") # yes!

my_account

your_account
Before:

$100.00

$50.00

After:
$100.00

$50.00

Garbage: See later slide

my_account

your_account

27

Aliases

• Two or more variables that refer to the same
object are aliases of each other

• One object can be accessed using more than
one variable

• Changing an object via one variable changes it
for all of its aliases, because there is really only
one object

• Aliases can be useful, but should be managed
carefully (Do you want me to be able to withdraw
money from your account? I doubt it!)

28

The None object

• Some languages will allow a variable to be
empty, or null

• We cannot do this in Python, but we can point
the variable to the None value

• This is good for cases where we want a variable
to exist but not have a definite value yet

my_var = None

• Later, we can assign the variable another value

my_var = "Hello World"

• The None value is considered "false"

29

Garbage Collection
• When there are no longer any variables containing a

reference to an object (e.g. the $50.00 on the earlier
slide), the program can no longer access it

• The object is useless and is considered garbage. Lots of
garbage objects can consume program memory.

• Therefore, these objects must be garbage collected.

• Some languages, like Java and Python, perform
automatic garbage collection and returns an object's
memory to the system for future use

• In other languages such as C/C++, the programmer must
write explicit code to perform the garbage collection

30

Garbage Collection

• Reassigning the variable’s value makes the
object garbage (unavailable):

my_account = None

my_accountBefore: $100.00

Garbage now

After:

$100.00

my_account

Garbage now

Also:

"Hey!"

print ("Hey!")

None

31

Garbage Collection

• If a variable is not pointing to a compatible
object, any call to an attribute or function of
that object will cause your program to fail.

my_account = BankAccount(100.00)

print (my_account.balance) # OK

my_account = None

print (my_account.balance) # Fails

32

Writing Classes

• True object-oriented programming is based
on classes that represent objects with well-
defined attributes and functionality

• The programs we’ve written in previous
examples have used classes from the
standard Python types

• Now we will begin to design programs that
rely on classes that we write ourselves

33

Classes and Objects

• An object has state and behavior

• Consider a 6-sided die (singular of dice)

– It’s state can be defined as the face showing

– It’s primary behavior is that it can be rolled

• We can represent a die in software by
designing a class called Die that models this

state and behavior

– The class is the blueprint for a die object

• We can then instantiate as many die objects
as our program needs: 2, 3, 100, etc.

34

Classes

• A class has a name and can contain data
declarations and/or method declarations

• A UML class diagram shows it as follows:

Data declarations

Method declarations

Class NameDie

- face_value: int

+ Die()
+ roll() : int

A way of expressing info about,

and relationships among,

classes. More to come...

35

Classes

• The values of the attributes define the state of
an object created from the class

• The functionality of the methods define the
behaviors of an object created from that class
"blueprint"

• For our Die class, an integer represents the
current value showing on the face - its state

• One of the methods represents a behavior of
"rolling" the die by setting its face value to a
random value between one and six

36

Constructors

• A constructor is a special method that is used to
set up an object when it is initially created

• Its name will be __init__

• It will always have the parameter self, plus others

• For Die, constructor is used to set the initial face

value of each new die object to one
my_die = Die()

• In Python, the constructor defines the class
data: its attributes

Variable Constructor

37

Constructors

• To create an attribute inside your constructor, you
will need two things. The self reference and the
attribute name (i.e., variable name)

def __init__ (self):
self.first_attribute = 1
self.second_attribute = True
self.third_attribute = "Hello World"

• What this does is create a variable (for the object)
which holds that value

• Parameters to a constructor are usually used for
setting these initial values

38

The __str__ Function

• All classes that represent objects should
define a __str__ function

• The __str__ function returns a string that

represents the object in some way

• It is called automatically when a reference
to an object is is passed to the print or
str functions

print (my_die)

s = str (my_die)

class Address (object):

def __init__ (self, first, last, st_add, city,
state, zip):

self.__first = first
self.__last = last
self.__st_add = st_add
self.__city = city
self.__state = state
self.__zip = zip

def __str__(self):
line_1 = self.__first + " " + self.__last + "\n"
line_2 = self.__stAdd + "\n"
line_3 = self.__city + ", " + self.__state + " "

+ self.__zip + "\n"
return line_1 + line_2 + line_3

class declaration

class attributes defined

constructor

__str__ function

40

Data Scope

• Recall: The scope of data is the area in a program
in which that data can be referenced (used)

• Instance data is declared at the class level (inside
the constructor) and it exists for as long as the
object exists

• The instance data can be used elsewhere within the
class code.

• Data declared within a function, called local data,
can be used only within that function and exists only
for as long as that function is executing

Data Scope

• Instance and local data

class SomeClass (object):

def __init__ (self):
self.__value = 10

def __str__ (self):
return "Value: " + str(self.__value)

def some_function (self):
local_value = 5
return local_value ** 2

Scope
for
local_value

Class-level
scope for
self.__value

42

Instance Data
• The face_value attribute in the Die class is

called instance data because each instance
(object) created has a corresponding face value

• A class declares the type of the data, but it does not
reserve any memory space for it

• Every time a new Die object is created, a new
face_value variable is created as well

• The objects of a class share the code in the method
definitions, but each object has its own data
space in memory for instance data

• The instance data goes out of scope when the last
reference to the object is set to null

43

Instance Data

• We can depict the two Die objects from
the DicePlayer class as follows:

die1 5face_value

die2 2face_value

Each object maintains its own face_value

variable, and thus its own state

Local Data

• Local data, then, is any variable defined inside the
function body:

def some_function (self):
local_value = 5
return local_value ** 2

• The variable named local_value is accessible
only inside some_function

• We could use the name local_value in a

different function, but it wouldn't be the same
variable

44

45

The self Reference

• self allows an object to refer to itself

• The self reference used inside a function refers to

the object for which the function is executed

• Suppose self is used in the Die class __str__

function as follows:
return str(self.__face_value)

• For each of the Die objects, self refers to and

returns:
str(die_1) 5

str(die_2) 2

46

The self Reference
• The self reference can be used to distinguish

the instance variable names of an object from local
function parameters with the same names

• Without the self reference, we need to invent and

use two different names that are synonyms

• The self reference lets us use the same name for

instance data and a local variable or function
parameter and resolves ambiguity

• Using the same name, with self for distinguishing,
makes programming more straight-forward

47

Static class elements
• Most of the code for a class will be geared towards

serving as a blueprint for objects of that type –
attributes for object data and functions for object
behaviors.

• However, you can also have static attributes and
functions, which will belong to the class as a whole.

• This is because they are relevant not to specific
objects but, rather, to all objects or something else.

• These elements, you will not access via an object.
Rather, you will access them via the class itself.

48

Static class elements
• Here are some examples of static elements in a

class:

class Student (object):

next_student_id = 100

def __init__(self, name):
self.__id = Student.next_student_id
Student.next_student_id += 1
self.__name = name

def __str__ (self):
return "Name: " + self.__name + ", ID: " +

str(self.__id)

def num_students():
return Student.next_student_id - 100

49

Static class elements
• Once the Student class is defined, you can access

its static elements using the class name. Example:

50

Visibility Modification
• In Python, we accomplish encapsulation (where an

object handles its own data) through the
appropriate use of visibility syntax

• Members of a class that are declared with public

visibility are accessible outside the class code

• Members of a class that are declared with private

visibility can be referenced only within the class
code itself.

• They cannot be accessed directly from outside,
only indirectly through other class functions

51

Visibility Modification

• Public variables violate the spirit of encapsulation
because they allow the client to "reach in" and
modify the object’s internal values directly

• Therefore, instance variables should not be
declared with public visibility

• Instead, you should make the instance variables
private and allow access only through special
getters and setters.

• This protects instance data and preserves the spirit
of encapsulation.

52

Visibility Modification
• Functions can also be public or private

• Functions that provide the object's services are
declared with public visibility so that they can be
invoked by clients

• Public functions are also called service functions

• Functions that simply to assist other functions are
called support or helper functions

• Since a support function is not intended to be called
by a client, it should be private, not public

53

Controlling Visibility
• To make an attribute or function public, simply

create the (attribute or function) name like you
normally would.

• Here, there is no need for anything special

• Create a public class attribute:

def __init__ (self):
self.public_attribute = 1

• Create a public class function:

def public_function (self):
function code...

54

Controlling Visibility
• To make an attribute or function private, begin the

(attribute or function) name with two underscores.

• This tells Python that they should be private

• Create a private class attribute:

def __init__ (self):
self.__private_attribute = 1

• Create a private class function:

def __private_function (self):
function code...

55

Accessing a Private Attribute
• When an attribute is private, the object can still

make it available, on its own terms.

• We will use an example from the Die class

• Create a getter for a private attribute:
@property
def face_value(self):

return self.__face_value

• Create a setter for a private attribute:
@face_value.setter
def face_value(self, new_value):

if 1 <= new_value <= Die.MAX:
self.__face_value = new_value

else:
print ("Error!")

56

Accessing a Private Attribute
• Once you have done this, and you have a reference

to an object, you can use the getter or setter as if it
were a public attribute.

• Get the attribute value:

print ("Face value:", my_die.face_value)

• Set the attribute value:
my_die.face_value = 5

• But, if we try to use an invalid value...
my_die.face_value = 10
>> Error!

57

Visibility Types - Summary

public private

Variables

Functions
Provide services

to clients

Support other

functions in the
class

Enforce
encapsulation

Violate
encapsulation

58

Interface of an object

• We can take one of two views of an object:

– internal - the details of the variables and methods of
the class that defines it

– external - the services that an object provides and how
the object interacts with the rest of the system

• From outside, the object is an encapsulated entity
providing a set of specific services

• These services define the object's interface - the
manner in which we ("we" being other parts of the
program) are able to interact with that object.

59

Black Box Metaphor

• An object can be thought of as a black box -- its
inner workings are encapsulated or hidden from
the client

• The client invokes the interface functions of the
object, which manages the instance data

Variables

FunctionsClient

Public
Methods

A Class: From Inside and Out

class X (object):

def __init__ (self):
self.__a = 15
self.__c = 'c'

def public_f (self):
return self.__c

def __private_f (self):
print (self.__a**2)

class X (object):
private int a;
def __init__ (self):
self.__a = 15
self.__c = 'c'

def public_f (self) :
return self.__c

private void changeA(){
a = 2;

}

How it looks to

other objects, from

other classes. The

outside-class point

of view.

How it looks on

the inside, from

the inside-class

point of view.

