
1

Objects and Classes

• Reading for this Lecture:
• Dawson, Chapter 8
• http://introcs.cs.princeton.edu/python/31datatype/
• http://introcs.cs.princeton.edu/python/32class/

• Functions and Modules
Revisited

• Introduction to Classes
• Object Variables and

Object References
• Instantiating Objects
• Using Methods in

Objects

• Class definitions
• Scope of Data

– Instance data
– Local data

• The self Reference

• Encapsulation and
visibility

Objects and Classes

 As you may remember, Python is an object-

oriented programming language

▶ An object is a program entity with state and behaviors

▶ Objects in a program may represent (and model)
real-world entities

▶ All data in a Python program are objects

 Objects belong to classes...

▶ A class can be seen as a blueprint for an object

▶ It represents the object's larger category

▶ It defines the object's attributes and behaviors

 To clarify, consider functions and modules...

Functions

 Recall: A function is a named chunk of code,
representing a program behavior, that does one
or more of these:

▶ Sends back a value, possibly calculating or
generating something first

▶ Performs operations on data

▶ Carries out a set of related commands

 Using functions lets us...

▶ break code up into smaller chunks

▶ keep parts of the program conceptually separate

▶ engage in greater code reuse

Modules

 We can enhance code reuse even more by grouping
functions and constants into modules.

 If there is a function we find ourselves using in multiple
programs, then we can put it into a module with related
functions and constants

 When we want to use it, we simply import the module and
access what we want via the module name.

 We do not have to rewrite the function because it is
already defined within the module, which we can import
into as many other code files as we like.

 For example:

import math

import random

Functions as "messages"

• You can think of a function as a kind of
"message" that you send somewhere:

• To the Python interpreter directly

• To a module

• To an object

• This code...
str_var = "Hello, world!"
print (str_var)

• ...is like saying "Hey, Python interpreter, go
print str_var to the screen!"

Functions as "messages"

• In contrast, this code...
import math
x = math.sqrt(9)

• ...is like saying "Hey, math module, go
calculate the square root of 9 and give it back!"

• This, of course, brings us back to the principle
of abstraction, where we do not concern
ourselves with behind-the-scenes details

• Objects and classes, then, provide us with
another variety of abstraction

7

Introduction to Classes

• A class defines the attributes and functions
(representing the state and behavior) of a
specific type of object

• Normally, we access an object by calling a
function defined by its class

• We may sometimes access object data
directly, via an attribute defined by its class,
but this is discouraged

8

"Classifying" into Classes

• To understand the context of the word "class" in
Python, think about the word "classify"

• A class will "classify" a set of "objects" based on
similar attributes and behaviors

• The furniture in this room can be classified as
"Furniture" class objects because of

common attributes and behaviors they share

• Entities like "Hello, world!" and
"goodbye" are both classified as "str" class

objects – strings of characters

9

Accessing Class Members

• When we create a variable and assign it a value,
we are creating a reference to an object

• The object is what contains the data

• The "reference" is the location of the object in
program memory

• We access an object’s "members" (i.e., functions
and attributes) using the reference variable name
and the "." operator:
object_name = "Hello" #ref. variable

print (object_name.upper()) # upper function

>>> HELLO

10

Example of a Class Definition

• We can draw a diagram of a class to outline
its important features before writing code –
its name, attributes, and methods

BankAccount

+ balance : float

. . .

+ BankAccount (initial : float)

+ deposit(amount : float) : bool

+ withdraw(amount : float) : bool

Class Name

List of its
Variables/Attributes

List of its

Methods/Functions

11

Example of a Class Definition
class BankAccount (object):

the constructor function

def __init__(self, initial):

self.balance = float(initial)

the deposit function

def deposit (self, amount):

if amount > 0:

self.balance += amount

return True

else:

print ("Must be greater than zero!")

return False

rest of code..

12

Example of a Class Definition
class BankAccount (object):

previous...

the withdraw function

def withdraw (self, amount):

if amount > 0:

self.balance -= amount

return amount

else:

print ("Must be greater than zero!")

return False

any additional code..

13

• First, you need the class header line:

class ClassName (object):

• After that, all the class code will be indented relative to
the class header.

• Next you will have your constructor function. This
contains the code that executes when you first create
a new object of this type. Start with the header:

def __init__ (self):

• You may also include some extra parameters:

def __init__ (self, name, number):

• It will at least have the parameter self.

Defining a class

14

• This can be any code you want to execute when the
object is first created.

• It is also where you define the attributes for that type
of object:

def __init__ (self, name, number):

self.name = name

self.number = number

• Here, the constructor establishes that every object of
this type will have the attributes name and number.

• The self. part distinguishes the attribute

Defining a class

15

• In most cases, you will want to define a special string
function for the class.

• This function determines how your type gets
translated to the string type, when you call for a data
conversion on it:

def __str__ (self):
return self.name + ", " + str(self.number)

• If you have a variable my_object, referring to an

object of this type, where the values of name and
number are "John" and 27, then this code...

print (str (my_object))

... will print: John, 27

Defining a class – string conversion

16

• You may also define special rich comparison functions
for the class, corresponding to the standard
comparison and equality operators:

__lt__ -> <
__le__ -> <=
__eq__ -> ==
__ne__ -> !=
__gt__ -> >
__ge__ -> >=

• These functions determine how two objects of this
type are ordered – for example, for sorting.

Defining a class - comparisons

17

• For example, you may decide two objects of that type
should be ordered by their "name" attributes:

def __eq__ (self, other):
return self.name == other.name

def __lt__ (self, other):
return self.name < other.name

• After defining __eq__ and __lt__, you could define

the other four in terms of the previous two. For
example...

def __gt__ (self, other):
return not (self < other or self == other)

• Or, you may choose to do it your own way

Defining a class - comparisons

18

• You can also define other functions for your class:

def my_function (self):

print ("Hello, my name is:", self.name)
print ("And my number is:", self.number)

• Your function must have the parameter self. However,
you can also include others:

def my_function2 (self, day_of_week):

print ("Hello, my name is:", self.name)
print ("And today is:", day_of_week)
return True

Defining a class

19

• Creating a BankAccount object:
my_account = BankAccount(100) # constructor

• Accessing BankAccount methods:

my_money = my_account.balance

print ("My balance is $" + str(my_money))

my_account.deposit(50.0)

print ("My balance is now $", end="")

print (my_account.balance)

• Of course, we could just do this...why don't we?
my_account.balance += 50.0

Creating and Using Objects

20

Prototype for a Class Definition

• We make an attribute/function private when we
want to prevent access to it from code written
outside the class

• Conversely, we let it be public when we want to
allow access from code written outside the class

• balance in the BankAccount class is public

• Normally, we declare attributes to be private and
functions to be public

• We will see some valid exceptions later

21

Creating Objects

• We use the class name, along with parameters, to create
an object

• Creating an object is called instantiation

• An object is an instance of a particular class

• my_account is assigned a reference to an object of type
BankAccount that encapsulates it's data – the balance

my_account = BankAccount(100)

This calls the BankAccount constructor, which

is a special function that initializes the object.

Notice "self" is not a parameter here!

Variable

22

Invoking Functions
• Once an object has been instantiated, we can

use the dot operator to invoke, or call, any of the
object’s functions

success = my_account.deposit(33.45)

• Notice we only supply the balance, not self

• A function call on an object might:

– Ask the object for some information OR

– Ask the object to perform a service OR

– Doing something to the state of the object

• We send the object a message, and we may get
back a reply (as data)

Leveraging OOP

 Classes and objects allow us to
encapsulate data and procedures, useful
for (among other things):

▶ Making code neater and easier to use

▶ Security of object data

▶ Maintaining logical structure

▶ Making program easier to understand

 Example: Address class, later in lecture

24

References
• As mentioned earlier, a variable does not hold the

actual data; instead, it holds a "reference" to the
data object.

• An object reference can be thought of as a
"pointer" to the location of the object in memory

• Rather than dealing with arbitrary address values,
we often depict a reference graphically

balancemy_account

num_1

BankAccount object

"Reference"
(or Pointer)

38

int object

100.0
float object

References

• Because the variable holds the reference, not the
actual object, we can do things like this:

strings = ["", "", "", "", ""]

strings[0] = "foo"

strings[1] = "Hello World"

strings[2] = "To be or not to be, "

strings[3] = ""

strings[4] = (the entire text of Tolstoy's
War and Peace)

• The data sizes are not a problem!

26

Reference Assignment

• When we re-assign a variable, we are
storing a new reference:

if my_account == your_account:
print ("The Same") # no!

your_account = my_account

if my_account == your_account:
print ("The Same") # yes!

my_account

your_account
Before:

$100.00

$50.00

After:
$100.00

$50.00

Garbage: See later slide

my_account

your_account

27

Aliases

• Two or more variables that refer to the same
object are aliases of each other

• One object can be accessed using more than
one variable

• Changing an object via one variable changes it
for all of its aliases, because there is really only
one object

• Aliases can be useful, but should be managed
carefully (Do you want me to be able to withdraw
money from your account? I doubt it!)

28

The None object

• Some languages will allow a variable to be
empty, or null

• We cannot do this in Python, but we can point
the variable to the None value

• This is good for cases where we want a variable
to exist but not have a definite value yet

my_var = None

• Later, we can assign the variable another value

my_var = "Hello World"

• The None value is considered "false"

29

Garbage Collection
• When there are no longer any variables containing a

reference to an object (e.g. the $50.00 on the earlier
slide), the program can no longer access it

• The object is useless and is considered garbage. Lots of
garbage objects can consume program memory.

• Therefore, these objects must be garbage collected.

• Some languages, like Java and Python, perform
automatic garbage collection and returns an object's
memory to the system for future use

• In other languages such as C/C++, the programmer must
write explicit code to perform the garbage collection

30

Garbage Collection

• Reassigning the variable’s value makes the
object garbage (unavailable):

my_account = None

my_accountBefore: $100.00

Garbage now

After:

$100.00

my_account

Garbage now

Also:

"Hey!"

print ("Hey!")

None

31

Garbage Collection

• If a variable is not pointing to a compatible
object, any call to an attribute or function of
that object will cause your program to fail.

my_account = BankAccount(100.00)

print (my_account.balance) # OK

my_account = None

print (my_account.balance) # Fails

32

Writing Classes

• True object-oriented programming is based
on classes that represent objects with well-
defined attributes and functionality

• The programs we’ve written in previous
examples have used classes from the
standard Python types

• Now we will begin to design programs that
rely on classes that we write ourselves

33

Classes and Objects

• An object has state and behavior

• Consider a 6-sided die (singular of dice)

– It’s state can be defined as the face showing

– It’s primary behavior is that it can be rolled

• We can represent a die in software by
designing a class called Die that models this

state and behavior

– The class is the blueprint for a die object

• We can then instantiate as many die objects
as our program needs: 2, 3, 100, etc.

34

Classes

• A class has a name and can contain data
declarations and/or method declarations

• A UML class diagram shows it as follows:

Data declarations

Method declarations

Class NameDie

- face_value: int

+ Die()
+ roll() : int

A way of expressing info about,

and relationships among,

classes. More to come...

35

Classes

• The values of the attributes define the state of
an object created from the class

• The functionality of the methods define the
behaviors of an object created from that class
"blueprint"

• For our Die class, an integer represents the
current value showing on the face - its state

• One of the methods represents a behavior of
"rolling" the die by setting its face value to a
random value between one and six

36

Constructors

• A constructor is a special method that is used to
set up an object when it is initially created

• Its name will be __init__

• It will always have the parameter self, plus others

• For Die, constructor is used to set the initial face

value of each new die object to one
my_die = Die()

• In Python, the constructor defines the class
data: its attributes

Variable Constructor

37

Constructors

• To create an attribute inside your constructor, you
will need two things. The self reference and the
attribute name (i.e., variable name)

def __init__ (self):
self.first_attribute = 1
self.second_attribute = True
self.third_attribute = "Hello World"

• What this does is create a variable (for the object)
which holds that value

• Parameters to a constructor are usually used for
setting these initial values

38

The __str__ Function

• All classes that represent objects should
define a __str__ function

• The __str__ function returns a string that

represents the object in some way

• It is called automatically when a reference
to an object is is passed to the print or
str functions

print (my_die)

s = str (my_die)

class Address (object):

def __init__ (self, first, last, st_add, city,
state, zip):

self.__first = first
self.__last = last
self.__st_add = st_add
self.__city = city
self.__state = state
self.__zip = zip

def __str__(self):
line_1 = self.__first + " " + self.__last + "\n"
line_2 = self.__stAdd + "\n"
line_3 = self.__city + ", " + self.__state + " "

+ self.__zip + "\n"
return line_1 + line_2 + line_3

class declaration

class attributes defined

constructor

__str__ function

40

Data Scope

• Recall: The scope of data is the area in a program
in which that data can be referenced (used)

• Instance data is declared at the class level (inside
the constructor) and it exists for as long as the
object exists

• The instance data can be used elsewhere within the
class code.

• Data declared within a function, called local data,
can be used only within that function and exists only
for as long as that function is executing

Data Scope

• Instance and local data

class SomeClass (object):

def __init__ (self):
self.__value = 10

def __str__ (self):
return "Value: " + str(self.__value)

def some_function (self):
local_value = 5
return local_value ** 2

Scope
for
local_value

Class-level
scope for
self.__value

42

Instance Data
• The face_value attribute in the Die class is

called instance data because each instance
(object) created has a corresponding face value

• A class declares the type of the data, but it does not
reserve any memory space for it

• Every time a new Die object is created, a new
face_value variable is created as well

• The objects of a class share the code in the method
definitions, but each object has its own data
space in memory for instance data

• The instance data goes out of scope when the last
reference to the object is set to null

43

Instance Data

• We can depict the two Die objects from
the DicePlayer class as follows:

die1 5face_value

die2 2face_value

Each object maintains its own face_value

variable, and thus its own state

Local Data

• Local data, then, is any variable defined inside the
function body:

def some_function (self):
local_value = 5
return local_value ** 2

• The variable named local_value is accessible
only inside some_function

• We could use the name local_value in a

different function, but it wouldn't be the same
variable

44

45

The self Reference

• self allows an object to refer to itself

• The self reference used inside a function refers to

the object for which the function is executed

• Suppose self is used in the Die class __str__

function as follows:
return str(self.__face_value)

• For each of the Die objects, self refers to and

returns:
str(die_1)  5

str(die_2)  2

46

The self Reference
• The self reference can be used to distinguish

the instance variable names of an object from local
function parameters with the same names

• Without the self reference, we need to invent and

use two different names that are synonyms

• The self reference lets us use the same name for

instance data and a local variable or function
parameter and resolves ambiguity

• Using the same name, with self for distinguishing,
makes programming more straight-forward

47

Static class elements
• Most of the code for a class will be geared towards

serving as a blueprint for objects of that type –
attributes for object data and functions for object
behaviors.

• However, you can also have static attributes and
functions, which will belong to the class as a whole.

• This is because they are relevant not to specific
objects but, rather, to all objects or something else.

• These elements, you will not access via an object.
Rather, you will access them via the class itself.

48

Static class elements
• Here are some examples of static elements in a

class:

class Student (object):

next_student_id = 100

def __init__(self, name):
self.__id = Student.next_student_id
Student.next_student_id += 1
self.__name = name

def __str__ (self):
return "Name: " + self.__name + ", ID: " +

str(self.__id)

def num_students():
return Student.next_student_id - 100

49

Static class elements
• Once the Student class is defined, you can access

its static elements using the class name. Example:

50

Visibility Modification
• In Python, we accomplish encapsulation (where an

object handles its own data) through the
appropriate use of visibility syntax

• Members of a class that are declared with public

visibility are accessible outside the class code

• Members of a class that are declared with private

visibility can be referenced only within the class
code itself.

• They cannot be accessed directly from outside,
only indirectly through other class functions

51

Visibility Modification

• Public variables violate the spirit of encapsulation
because they allow the client to "reach in" and
modify the object’s internal values directly

• Therefore, instance variables should not be
declared with public visibility

• Instead, you should make the instance variables
private and allow access only through special
getters and setters.

• This protects instance data and preserves the spirit
of encapsulation.

52

Visibility Modification
• Functions can also be public or private

• Functions that provide the object's services are
declared with public visibility so that they can be
invoked by clients

• Public functions are also called service functions

• Functions that simply to assist other functions are
called support or helper functions

• Since a support function is not intended to be called
by a client, it should be private, not public

53

Controlling Visibility
• To make an attribute or function public, simply

create the (attribute or function) name like you
normally would.

• Here, there is no need for anything special

• Create a public class attribute:

def __init__ (self):
self.public_attribute = 1

• Create a public class function:

def public_function (self):
function code...

54

Controlling Visibility
• To make an attribute or function private, begin the

(attribute or function) name with two underscores.

• This tells Python that they should be private

• Create a private class attribute:

def __init__ (self):
self.__private_attribute = 1

• Create a private class function:

def __private_function (self):
function code...

55

Accessing a Private Attribute
• When an attribute is private, the object can still

make it available, on its own terms.

• We will use an example from the Die class

• Create a getter for a private attribute:
@property
def face_value(self):

return self.__face_value

• Create a setter for a private attribute:
@face_value.setter
def face_value(self, new_value):

if 1 <= new_value <= Die.MAX:
self.__face_value = new_value

else:
print ("Error!")

56

Accessing a Private Attribute
• Once you have done this, and you have a reference

to an object, you can use the getter or setter as if it
were a public attribute.

• Get the attribute value:

print ("Face value:", my_die.face_value)

• Set the attribute value:
my_die.face_value = 5

• But, if we try to use an invalid value...
my_die.face_value = 10
>> Error!

57

Visibility Types - Summary

public private

Variables

Functions
Provide services

to clients

Support other

functions in the
class

Enforce
encapsulation

Violate
encapsulation

58

Interface of an object

• We can take one of two views of an object:

– internal - the details of the variables and methods of
the class that defines it

– external - the services that an object provides and how
the object interacts with the rest of the system

• From outside, the object is an encapsulated entity
providing a set of specific services

• These services define the object's interface - the
manner in which we ("we" being other parts of the
program) are able to interact with that object.

59

Black Box Metaphor

• An object can be thought of as a black box -- its
inner workings are encapsulated or hidden from
the client

• The client invokes the interface functions of the
object, which manages the instance data

Variables

FunctionsClient

Public
Methods

A Class: From Inside and Out

class X (object):

def __init__ (self):
self.__a = 15
self.__c = 'c'

def public_f (self):
return self.__c

def __private_f (self):
print (self.__a**2)

class X (object):
private int a;
def __init__ (self):
self.__a = 15
self.__c = 'c'

def public_f (self) :
return self.__c

private void changeA(){
a = 2;

}

How it looks to

other objects, from

other classes. The

outside-class point

of view.

How it looks on

the inside, from

the inside-class

point of view.

