Objects and Classes

Functions and Modules ¢ Class definitions
Revisited » Scope of Data
ntroduction to Classes — Instance data
Object Variables and — Local data

Object References * The self Beference
Instantiating Objects Encapsulation and
Using Methods in visibility

Obijects

Reading for this Lecture:

- Dawson, Chapter 8
 http://introcs.cs.princeton.edu/python/31datatype/
 http://introcs.cs.princeton.edu/python/32class/




Objects and Classes

As you may remember, Python is an object-
oriented programming language
An object is a program entity with state and behaviors

Objects in a program may represent (and model)
real-world entities

All data in a Python program are objects
Objects belong to classes...

A class can be seen as a blueprint for an object

It represents the object's larger category

It defines the object's attributes and behaviors

To clarify, consider functions and modules...




Functions

Recall: A function is a named chunk of code,
representing a program behavior, that does one
or more of these:

Sends back a value, possibly calculating or
generating something first

Performs operations on data
Carries out a set of related commands

Using functions lets us...
break code up into smaller chunks
keep parts of the program conceptually separate
engage in greater code reuse




Modules

We can enhance code reuse even more by grouping
functions and constants into modules.

If there is a function we find ourselves using in multiple
programs, then we can put it into a module with related
functions and constants

When we want to use it, we simply import the module and
access what we want via the module name.

We do not have to rewrite the function because it is
already defined within the module, which we can import
iInto as many other code files as we like.

For example:
import math

import random



Functions as "messages”

* You can think of a function as a kind of
"message" that you send somewhere:
« To the Python interpreter directly
 To amodule
 To an object

» This code...

str var = "Hello, world!"
print (str var)

« ...Is like saying "Hey, Python interpreter, go
print str_var to the screen!”




Functions as "messages”

In contrast, this code...

import math

x = math.sqrt (9)
...Is like saying "Hey, math module, go
calculate the square root of 9 and give it back!"

This, of course, brings us back to the principle
of abstraction, where we do not concern
ourselves with behind-the-scenes details

Objects and classes, then, provide us with
another variety of abstraction




Introduction to Classes

» A class defines the attributes and functions
(representing the state and behavior) of a
specific type of object

* Normally, we access an object by calling a
function defined by its class

 We may sometimes access object data
directly, via an attribute defined by its class,
but this is discouraged



"Classifying" into Classes

To understand the context of the word "class" in
Python, think about the word "classify"

A class will "classify" a set of "objects" based on
similar attributes and behaviors

The furniture in this room can be classified as
"Furniture" class objects because of

common attributes and behaviors they share

Entities like "Hello, world!" and
"goodbye" are both classified as "str" class
objects — strings of characters




Accessing Class Members

When we create a variable and assign it a value,
we are creating a reference to an object

The object is what contains the data

The "reference" is the location of the object in
program memory

We access an object’s "members" (i.e., functions
and attributes) using the reference variable name
and the "." operator:

object name = "Hello" #ref. variable
print (object name.upper()) # upper function
>>> HELLO




Example of a Class Definition

We can draw a diagram of a class to outline

its important features before writing code —
its name, attributes, and methods

Class Name

List of its

BankAccount

Variables/Attributes

List of its

+ balance : float

Methods/Functions

+ BankAccount (initial : float)

| + deposit(amount : float) : bool

+ withdraw(amount : float) : bool

10



Example of a Class Definition

class BankAccount (object):

# the constructor function
def init (self, initial):
self.balance = float(initial)

# the deposit function
def deposit (self, amount):
if amount > O:
self .balance += amount
return True
else:
print ("Must be greater than zero!")

return False

# rest of code..

11




Example of a Class Definition

class BankAccount (object):
# previous...

# the withdraw function
def withdraw (self, amount):
if amount > O:
self .balance -= amount
return amount
else:
print ("Must be greater than zero!")

return False

# any additional code..

12



Defining a class

First, you need the class header line:

class ClassName (object):

After that, all the class code will be indented relative to
the class header.

Next you will have your constructor function. This
contains the code that executes when you first create
a new object of this type. Start with the header:

def init  (self):

You may also include some extra parameters:

def init  (self, name, number):

It will at least have the parameter self.

13



Defining a class

This can be any code you want to execute when the
object is first created.

It is also where you define the attributes for that type
of object:

def init (self, name, number):

self.name = name

self.number = number

Here, the constructor establishes that every object of
this type will have the attributes name and number.

The self. part distinguishes the attribute

14



Defining a class — string conversion

* In most cases, you will want to define a special string
function for the class.

 This function determines how your type gets
translated to the string type, when you call for a data
conversion on it:

def str (self):
return self.name + ", " + str(self.number)

* If you have a variable my object, referring to an
object of this type, where the values of name and
nhumber are "John" and 27, then this code...

print (str (my object))

... Will print) John, 27 5




Defining a class - comparisons

* You may also define special rich comparison functions
for the class, corresponding to the standard
comparison and equality operators:

lt -> <
le -> =
eq -> ==
ne -> 1=
gt -> >
ge -> >=

* These functions determine how two objects of this
type are ordered — for example, for sorting.

16



Defining a class - comparisons

* For example, you may decide two objects of that type
should be ordered by their "name" attributes:

def eq (self, other):
return self.name == other.name

def 1t (self, other):
return self.name < other.name

* After defining __eq _and __ 1t , you could define
the other four in terms of the previous two. For
example...

def gt (self, other):
return not (self < other or self == other)

- Or, you may choose to do it your own way 7




Defining a class

* You can also define other functions for your class:

def my function (self):

print ("Hello, my name is:", self.name)
print ("And my number is:", self.number)

* Your function must have the parameter self. However,
you can also include others:

def my function2 (self, day of week):

print ("Hello, my name is:", self.name)
print ("And today is:", day of week)
return True

18



Creating and Using Objects

Creating a BankAccount object:

my account = BankAccount (100) # constructor

Accessing BankAccount methods:

my money = my account.balance

print ("My balance is $" + str (my money))
my account.deposit(50.0)

print ("My balance is now $", end="")

print (my account.balance)

Of course, we could just do this...why don't we?
my account.balance += 50.0

19



Prototype for a Class Definition

We make an attribute/function private when we
want to prevent access to it from code written
outside the class

Conversely, we let it be public when we want to
allow access from code written outside the class

balance in the BankAccount class is public

Normally, we declare attributes to be private and
functions to be public

We will see some valid exceptions later

20



Creating Objects

We use the class name, along with parameters, to create

an object \‘ /
my_account = Ba kAccount(100)|

/

Variable This calls the BankAccount constructor, which
is a special function that initializes the object.
Notice "self" is nofa parameter here!

Creating an object is called instantiation
An object is an instance of a particular class

my account IS assigned a reference to an object of type
BankAccount that encapsulates it's data — the balance

21



Invoking Functions

Once an object has been instantiated, we can
use the dot operator to invoke, or call, any of the
object’s functions

success = my account.deposit(33.45)

Notice we only supply the balance, not self

A function call on an object might:
— Ask the object for some information OR

— Ask the object to perform a service OR
— Doing something to the state of the object

We send the object a message, and we may get
back a reply (as data)

22




Leveraging OOP

. Classes and objects allow us to
encapsulate data and procedures, useful
for (among other things):

Making code neater and easier to use
Security of object data

Maintaining logical structure

Making program easier to understand

. Example: Address class, later in lecture



References

 As mentioned earlier, a variable does not hold the
actual data; instead, it holds a "reference" to the

data object.

* An object reference can be thought of as a
"pointer” to the location of the object in memory

« Rather than dealing with arbitrary address values,
we often depict a reference graphically

num 1 > 38
"Reference" int object

(or Pointer)

my account

—"[ balance } m

BankAccount object float object
24



References

Because the variable holds the reference, not the
actual object, we can do things like this:

strings = ["", ", "n, owwoowng
strings[0] = "foo"

strings[1l] = "Hello World"
strings[2] = "To be or not to be, "

strings[3] = ""

strings[4] = (the entire text of Tolstoy's
War and Peace)

The data sizes are not a problem!




Reference Assignment

 When we re-assign a variable, we are
storing a new reference:

my account| — |  $100.00 |
Before:
your account ——~—>[ $50.00 ]
if my account == your account:

print ("The Same") # no!

your account = my account

my account | — | $100.00 |
After: W
your account | — [ $50.00 ]
Garbage: See later slide
if my account == your account:

print ("The Same") # yes! 26



Aliases

Two or more variables that refer to the same
object are aliases of each other

One object can be accessed using more than
one variable

Changing an object via one variable changes it
for all of its aliases, because there is really only
one object

Aliases can be useful, but should be managed
carefully (Do you want me to be able to withdraw
money from your account? | doubt it)

27



The None object

Some languages will allow a variable to be
empty, or null

We cannot do this in Python, but we can point
the variable to the None value

This is good for cases where we want a variable
to exist but not have a definite value yet

my var = None

Later, we can assign the variable another value
my var = "Hello World"

The None value is considered "false"

28



Garbage Collection

When there are no longer any variables containing a
reference to an object (e.g. the $50.00 on the earlier
slide), the program can no longer access it

The object is useless and is considered garbage. Lots of
garbage objects can consume program memoty.

Therefore, these objects must be garbage collected.

Some languages, like Java and Python, perform
automatic garbage collection and returns an object's
memory to the system for future use

In other languages such as C/C++, the programmer must
write explicit code to perform the garbage collection

29



Garbage Collection

* Reassigning the variable’s value makes the
object garbage (unavailable):

Before: my_account ——»[ $100.00 ]

my account = None

After: my_account| ——[ None |
Garbage now

| $100.00 |

Also: print ("Hey!")

Garbage now
[ "Hey!" J

30



Garbage Collection

* |f a variable is not pointing to a compatible
object, any call to an attribute or function of
that object will cause your program to falil.

my account = BankAccount (100.00)
print (my account.balance) # OK
my account = None

print (my account.balance) # Fails

31



Writing Classes

 True object-oriented programming is based
on classes that represent objects with well-
defined attributes and functionality

* The programs we’ve written in previous
examples have used classes from the
standard Python types

* Now we will begin to design programs that
rely on classes that we write ourselves

32



Classes and Objects

* An object has state and behavior

» Consider a 6-sided die (singular of dice)
— It's state can be defined as the face showing
— It’s primary behavior is that it can be rolled

» We can represent a die in software by
designing a class called Die that models this
state and behavior
— The class is the blueprint for a die object

* We can then instantiate as many die objects
as our program needs: 2, 3, 100, etc.

33



Classes
* A class has a name and can contain data
declarations and/or method declarations
A UML class diagram shows it as follows:

\A way of expressing info about,

and relationships among,
classes. More to come...

Die < Class Name

_face value: int < Data declarations

+ Die() .
+roll() : int < Method declarations

34



Classes

The values of the attributes define the state of
an object created from the class

The functionality of the methods define the
behaviors of an object created from that class
"blueprint”

For our Die class, an integer represents the
current value showing on the face - its state

One of the methods represents a behavior of
"rolling" the die by setting its face value to a
random value between one and six

35



Constructors

A constructor is a special method that is used to
set up an object when it is initially created

ts name will be __init__
t will always have the parameter self, plus others

~or Die, constructor is used to set the initial face

value of each new die object to one
my die = Die (

Var|§ble Congtructor

In Python, the constructor defines the class
data: its attributes

36



Constructors

* To create an attribute inside your constructor, you

will need two things. The self reference and the

attribute name (i.e., variable name)

def

init (self) :

self.first attribute = 1
self.second attribute = True

self.third attribute = "Hello World"

« What this does is create a variable (for the object)
which holds that value

« Parameters to a constructor are usually used for

setting these Initial values

37



The sir Function

* All classes that represent objects should
definea str  function

 The str  function returns a string that
represents the object in some way

e |t is called automatically when a reference
to an object is Is passed to the print or

str functions
print (my die)

s = str (my die)

38



class Address (object): class declaration

def init  (self, first, last, st add, city,
state, 21p)
self. first = first
self. last = last
self. st add = st _add
self. city = city
self. state = state
self. zip = zip

def str (self):

I:he 1l = self. first + " " + self. 1last + "\n"

llne_2 = self.__stAdd + "\n"

line 3 = self. city + ", " + self. state + " "
+ self. zip + "\n"

return line 1 + line 2 + line 3



Data Scope

Recall: The scope of data is the area in a program
In which that data can be referenced (used)

Instance data is declared at the class level (inside
the constructor) and it exists for as long as the
object exists

The instance data can be used elsewhere within the
class code.

Data declared within a function, called /ocal data,
can be used only within that function and exists only
for as long as that function is executing

40



Data Scope

* Instance and local data

class SomeClass (object):

def init  (self):
self. wvalue = 10

def str  (self):

return "Value: " + str(self. wvalue)
def some function (self): Scope
local value = 5 for

return local value ** 2 local_value

Class-level
scope for
self. value



Instance Data

The face wvalue attribute in the Die class is
called instance data because each instance
(object) created has a corresponding face value

A class declares the type of the data, but it does not
reserve any memory space for it

Every time a new Die object is created, a new
face wvalue variable is created as well

The objects of a class share the code in the method
definitions, but each object has its own data
space in memory for instance data

The instance data goes out of scope when the last
reference to the object is set to null

42



Instance Data

* We can depict the two Die objects from
the DicePlaver class as follows:

diel ——»[ face value > 5

die2 ——»[ face value } > 2

Each object maintains its own face value
variable, and thus its own state



Local Data

« Local data, then, is any variable defined inside the
function body:

def some function (self):
local value = 5
return local value ** 2

* The variable named local wvalue is accessible
only inside some function

« We could use the name local valueina
different function, but it wouldn't be the same
variable

44



The self Reference

self allows an object to refer to itself

The self reference used inside a function refers to
the object for which the function is executed

Suppose self isusedinthe Dieclass str
function as follows:

return str(self. face value)

For each of the Die objects, self refers to and
returns:

str(die 1) = 5

str(die 2) =2 2

45



The self Reference

The self reference can be used to distinguish

the instance variable names of an object from local
function parameters with the same names

Without the sel1f reference, we need to invent and
use two different names that are synonyms

The self reference lets us use the same name for

Instance data and a local variable or function
parameter and resolves ambiguity

Using the same name, with self for distinguishing,
makes programming more straight-forward

46



Static class elements

Most of the code for a class will be geared towards
serving as a blueprint for objects of that type —
attributes for object data and functions for object
behaviors.

However, you can also have static attributes and
functions, which will belong to the class as a whole.

This is because they are relevant not to specific
objects but, rather, to all objects or something else.

These elements, you will not access via an object.
Rather, you will access them via the class itself.

47



Static class elements

* Here are some examples of static elements in a
class:

class Student (object):

next student id = 100

def init (self, name):

self. id = Student.next student id
Student.next student id +=1

self. name = name

def str  (self):

return "Name: " + self. name + ", ID: " +
str(self. id)

def num students():
return Student.next student id - 100 48




Static class elements

* Once the Student class is defined, you can access

its static elements using the class name. Example:
>>> s = Student("Bob"
f>>> print (s)

1

>>> 82 = Student("Susie™)

>>> print (s2)

Name: Susie, ID: 161

>>> print (Student.num_students())
)

>>> print (Student.next student id)
102

>>>

49



Visibility Modification
In Python, we accomplish encapsulation (where an

object handles its own data) through the
appropriate use of visibility syntax

Members of a class that are declared with public
visibility are accessible outside the class code

Members of a class that are declared with private
visibility can be referenced only within the class
code itself.

They cannot be accessed directly from outside,
only indirectly through other class functions

50



Visibility Modification

Public variables violate the spirit of encapsulation
because they allow the client to "reach in" and
modify the object’s internal values directly

Therefore, instance variables should not be
declared with public visibility

Instead, you should make the instance variables
private and allow access only through special
getters and setters.

This protects instance data and preserves the spirit
of encapsulation.

o1



Visibility Modification
Functions can also be public or private

Functions that provide the object's services are
declared with public visibility so that they can be
iInvoked by clients

Public functions are also called service functions

Functions that simply to assist other functions are
called support or helper functions

Since a support function is not intended to be called
by a client, it should be private, not public

52



Controlling Visibility

To make an attribute or function public, simply
create the (attribute or function) name like you
normally would.

Here, there is no need for anything special

Create a public class attribute:
def init  (self):

self .public attribute =1

Create a public class function:

def public function (self):
# function code...

53



Controlling Visibility

To make an attribute or function private, begin the

(attribute or function) name with two underscores.

This tells Python that they should be private
Create a private class attribute:

def init  (self):
self. private_attribute =

1

Create a private class function:

def private function (self):
# function code...

54



Accessing a Private Attribute

When an attribute is private, the object can still
make it available, on its own terms.

We will use an example from the Die class
Create a getter for a private attribute:

@property
def face value(self):
return self. face value

Create a setter for a private attribute:

@face value.setter
def face value(self, new value):
if 1 <= new value <= Die.MAX:
self. face value = new value
else:
print ("Error!")

55




Accessing a Private Attribute

Once you have done this, and you have a reference
to an object, you can use the getter or setter as if it
were a public attribute.

Get the attribute value:

print ("Face value:", my die.face value)

Set the attribute value:
my die.face value = 5

But, if we try to use an invalid value...

my die.face value = 10
>> Error!

56



Visibility Types - Summary

public private
Variables Violate _ Enforce_
encapsulation encapsulation
: : Support other
: Provi Vi . :
Functions ovide SEIVICES 1 functions in the
to clients
class




Interface of an object

* We can take one of two views of an object:

— internal - the details of the variables and methods of
the class that defines it

— external - the services that an object provides and how
the object interacts with the rest of the system
* From outside, the object is an encapsulated entity
providing a set of specific services

* These services define the object's interface - the
manner in which we ("we" being other parts of the
program) are able to interact with that object.

58



Black Box Metaphor

* An object can be thought of as a black box -- its
iInner workings are encapsulated or hidden from
the client

 The client invokes the interface functions of the
object, which manages the instance data

Public
Methods

59



A Class: From Inside and Out

class X (object):

def init  (self):
self. a = 15

self.__c = '¢c'

def public f (self):
return self. c¢

def private f (self):

print (self. a**2)

How it looks on
the inside, from
the inside-class
point of view.

class X (object):

def init  (self):
self. a = 15

self. c = '¢'

def public f (self)
return s;if.__c
How it looks to
other objects, from
other classes. The
outside-class point
of view.




