
1

Object-Oriented Programming

 Identifying classes and objects

 Types of class relationships

 A uses B

 A has-a B

 A is-a/is B

 Inheritance relationships

 Polymorphism

 Reading:

 Dawson, Chapter 9

 http://introcs.cs.princeton.edu/python/33design/

2

 A class represents a group (“class”) of objects with
the same attributes and behaviors

 Generally, classes representing objects should be

given names that are singular nouns

 Examples: Coin, Student, Message

 A class represents the concept (or "blueprint") of

such an object

 We are free to instantiate as many “instances” of
each object as needed

 Good selection of object names for the instances

can be helpful to understanding

Identifying Classes and Objects

3

Identifying Classes and Objects

 We want classes with the proper amount of
detail - neither too much nor too little

 For example, it may be unnecessary to create
separate classes for each type of appliance in a
house

 It may be sufficient to define a more general
Appliance class with appropriate instance

data

 It all depends on the details of the problem
being solved

4

Identifying Classes and Objects

 Part of identifying the classes we need is the
process of assigning responsibilities to each
class

 Every activity that a program must accomplish
must be represented by one or more methods
in one or more classes

 We generally use verbs for the names of
methods

 In early stages it is not necessary to determine
every method of every class – begin with
primary responsibilities and evolve the design

5

Class Relationships

• Classes in a software system can have various

types of relationships to each other

• Four of the most common relationships:

– Dependency: A uses B

– Aggregation: A has-a B (as in B is an integral part of A)

– Interface: A is B (adjective) or A is-a B (noun)

– Inheritance: A is-a B

• We will mainly focus on the first two and the last

• interface has different meanings...

6

Dependency

• A dependency exists when one class relies on

another in some way, usually by invoking the

methods of the other

• We've seen dependencies in previous

examples and in Projects 1 and 2

• We don't want numerous or complex

dependencies among classes

• Nor do we want complex classes that don't

depend on others

• A good design strikes the right balance

7

Dependency

• For example, a DicePlayer object uses two Die

objects – rolling them on each turn

• If we wrote software for a taxi service, we might

have classes for Driver and Taxi

• The relationship between the two would be one

of dependency. A Driver drives a Taxi

• Dependency indicates a relationship where one

type uses the other – but neither is considered

part of the other.

• We say that A "uses" B

8

Aggregation

• One of the benefits of object-oriented
programming is that we can define new types
composed of other types

• An aggregate is an object that is made up of
other objects

• Therefore aggregation is a has-a relationship

– A Car has a Transmission and has an Engine

– A StudentBody has several Student objects

– A CoffeeMaker has a Heater and a Container

• These parts can be basic built-in types, or other custom-
made types

9

Aggregation

• In code, an aggregate object contains references
to its component objects as instance data

• The aggregate object itself is defined in part by
the objects that make it up

• This is a special kind of dependency – the
aggregate usually relies for its existence on
the component objects

• As we saw with the Address problem in class, it
can be very useful to deal with the aggregate as
a self-contained unit, rather than trying to juggle
separate parts

Aggregation

• There are two ways to include the component

objects in an object that is an aggregation

– For one component (or a small constant number of

components), use parameters in the constructor

def __init__ (self, first_name, last_name,
street,...):

– For a large or indefinite number of components, you

can create an empty list, along with a function to add

items

def place_order (self, name, flavor, size):

...

10

UML – A Modeling Standard

• UML is a graphical tool to visualize and analyze

the requirements and do design of an object-

oriented solution to a problem

– Allows you to visualize the problem / solution

– Organizes your detailed information

• We have seen this before, implicitly.

• It's a complex topic, but we will examine one part:

class diagrams

11

12

Class Diagrams

• Classify the object types of the program

• Define name of each class

• Define each class’s members:
– Attributes (variables)

– Behaviors (functions)

• Show relationships between classes
– Dependency

– Aggregation

– Inheritance

13

Dependency/Aggregation in UML

StudentBody

- students : list

__str__(self) : str

Student

- first_name : str

- last_name : str

- home_address : Address

- school_address : Address

__str__(self) : str

- street_address : str

- city : str

- state : str

- zip_code : int

AddressDependency shown with this symbol

Aggregation shown with this symbol

14

Dependency/Aggregation in UML

+ roll(self)

DicePlayer

- other : DicePlayer

- name : str

- score : int

+ roll(self) : int

__str__(self)

- MAX : int

- face_value : int

Die

15

Dependency/Aggregation in UML

IceCreamParlor

- products : list

- employees : list

- tools : list

__str__(self) : str

Milkshake

- owner : str

- flavor : str

- size : str

(others)

Inheritance

• Inheritance allows a software developer to derive
a new class from an existing one

• The existing class is called the parent class,
superclass, or base class

• The new class is called the child class, subclass
or derived class

• As the name implies, the child inherits
characteristics of the parent – i.e., its attributes
and data

16

Inheritance

• Software reuse is a fundamental benefit of
inheritance

• As they say, "Don't reinvent the wheel". Take
advantage of what others have done well.

• A programmer can tailor a derived class as
needed:

adding new variables and functions

"overriding" some of the inherited methods

• An inheritance relationship specifies that:

A is a B

17

Inheritance

• Inheritance is based on an is-a relationship

• The child is a more specific version of the parent

• Inheritance relationships are shown in a UML class
diagram using a solid arrow from the child class to
the parent class

18

Vehicle

Car

Car is a more

specific type of

Vehicle

Deriving Subclasses

• In Python, we use the class header line to establish
an inheritance relationship

• Specifically, we place the parent class name in
parentheses after the class name.

• In the example below, we are creating a Car class
that is based on a more general Vehicle class

19

class Car (Vehicle):

class contents

Overriding Members

• Left alone, a child class will inherit all the public
functions of its parent class – as if you "copied and
pasted" the code into this one.

• However, a child class can redefine (or "override")
the definition of a public inherited function in favor
of its own, more class-appropriate, definition

• In Python, code is interpreted and executed at
runtime, so this is where types come into play.

• The class of the object determines which version of
the function is invoked at execution

• If you have a public variable in the parent class, and
then attempt to assign a variable of the same name
in the child class, it will overwrite the previous value.

20

The super Function

• In Python, constructors and other public functions are
inherited from the parent class.

• Yet we often want to use the parent's version of the
function inside the child's version

• The super function can be used to refer to the parent
and invoke the parent's version

def Child (Parent):

def __init__(self):

super().__init__() # a call to Parent()

plus whatever code we need for Child

21

The super Function

• The first line of a child’s constructor should use the
super reference to call the parent’s constructor

• The super reference can also be used to reference
(with a dot .) other variables and methods defined in
the parent’s class:
def my_function (self):

super().my_function() # a call to the

parent version

plus whatever code we need for child

class version

22

Class Hierarchies

• A child class of one parent can be the parent of
another child, forming a class hierarchy

• Two children of the same parent are called siblings

23

Business

KMart Macys

ServiceBusiness

Kinkos

RetailBusiness

Class Hierarchies

• A child class inherits from all its ancestor classes

• An inherited variable or function is passed
continually down the line (unless it is declared
private)

• Common features should be put as high in the
hierarchy as is reasonable

• There is no single class hierarchy that is
appropriate for all situations

24

Interface

• Here, we get into the notion of an interface

• In some languages, such as Java, there will be a
formal structure called an interface

• (In fact, in Java, "interface" is a reserved word!)

• At the very least, though, the term refers to the
idea that there are certain operations and
messages you can apply to something

• For example, you can:
Perform arithmetic with numbers

Access element and slices of sequences

Fetch values from dictionaries using keys

25

Interface
• Sometimes, completely different types may share a

similar interface

• For example, the + operator can be applied to both
numbers and strings

• For sequences and dictionaries, you can also use
the same syntax for getting elements:

variable[index_or_key]

• In Project 2, you may notice that the different shape
classes share in common an area function, so you
can call .area() for any of them!

• This makes it possible to loop through a sequence of
different shape objects without having to change the
code for any of those types.

• These are examples of polymorphism.

26

27

Polymorphism

• The term polymorphism literally means
"having many forms"

• Polymorphism is in effect when we can
treat different types in a similar manner

• Many operations and function calls in
Python are potentially polymorphic

• You can apply similar actions towards very
different types, such as adding numbers vs.
concatenating strings.

28

Designing for Inheritance

• As we've discussed, taking the time to create a

good software design reaps long-term benefits

• Inheritance issues are an important part of an

object-oriented design

• Properly designed inheritance relationships can

contribute greatly to the elegance,

maintainability, and reuse of the software

• Let's summarize some of the issues regarding

inheritance that relate to a good software design

29

Inheritance Design Issues

• Every derivation should be an is-a relationship

• Think about a potential future class hierarchy

• Design classes to be reusable and flexible

• Find common characteristics of classes and

push them as high in the class hierarchy as

appropriate, i.e. “generalize” the behavior
• Override methods as appropriate to tailor or

change the functionality of a child

• Add new variables to children, but only

redefine inherited variables if you mean it

30

Inheritance Design Issues

• Allow each class to manage its own data; use
the super reference to invoke the parent's
constructor to set up its data

• Even if there are no current uses for them,
override general methods such as __str__ and
__eq__ with appropriate definitions

• You can use super classes to represent general
concepts that lower classes have in common

• Use visibility modifiers carefully to provide
needed access without violating encapsulation

