
1

Sorting and Searching

• Sorting

o Simple: Selection Sort and Insertion Sort

o Efficient: Quick Sort and Merge Sort

• Searching

o Linear

o Binary

• Reading for this lecture:
http://introcs.cs.princeton.edu/python/42sort/

2

Sorting

• Sorting is the process of arranging a list of items in a

particular order

• The sorting process is based on specific value(s)

– Sorting a list of test scores in ascending numeric order

– Sorting a list of people alphabetically by last name

• There are many algorithms, which vary in efficiency, for

sorting a list of items

• We will examine four specific algorithms:

Selection Sort Quicksort

Insertion Sort Merge Sort

3

Selection Sort

• The approach of Selection Sort:

– Select a value and put it in its final place in the list

– Repeat for all other values

• In more detail:

– Find the smallest value in the list

– Switch it with the value in the first position

– Find the next smallest value in the list

– Switch it with the value in the second position

– Repeat until all values are in their proper places

4

Selection Sort

• An example:
original: 3 9 6 1 2

smallest is 1: 1 9 6 3 2

smallest is 2: 1 2 6 3 9

smallest is 3: 1 2 3 6 9

smallest is 6: 1 2 3 6 9

• Each time, the smallest remaining value is found
and exchanged with the element in the "next"
position to be filled

5

Selection Sort
• Algorithm:

def selection_sort (in_list):

for index in range(len(in_list)-1):

min = index

for scan in range(len(in_list)):

if in_list[scan] < in_list[min]:

min = scan

temp = in_list[min]

in_list[min] = in_list[index]

in_list[index] = temp

6

Swapping Two Values

• The processing of the selection sort algorithm

includes the swapping of two values

• Swapping requires three assignment statements

and a temporary storage location of the same

type as the data being swapped:

first = 35

second = 53

temp = first

first = second # 53 now

second = temp # 35 now

7

Polymorphism in Sorting

• Recall that a class can have comparison functions
that establish the relative order of its objects

• We can use polymorphism to develop a generic
sort for any list of comparable objects

• The list can sort itself using its sort function

• That way, one method can be used to sort a group
of Person objects, Book objects, or whatever --
as long as the class implements the appropriate
comparison functions for that type

8

Polymorphism in Sorting

• The sorting method doesn't "care" what type of
object it is sorting, it just needs to be able to
compare it to other objects in the list

• That is guaranteed by putting in the appropriate
comparison functions so that the sorting method
can compare the individual objects to one
another – where they are mutually comparable

• We can define these functions for a class in
order to determine what it means for one object
of that class to be “less than another” – or "equal
to", "greater than", etc.

9

Insertion Sort

• The approach of Insertion Sort:

– Pick any item and insert it into its proper place in a

sorted sublist

– Repeat until all items have been inserted

• In more detail:

– Consider the first item to be a sorted sublist (of one item)

– Insert the second item into the sublist, shifting the first

item as needed to make room to insert the new addition

– Insert the third item into the sublist (of two items),

shifting items as necessary

– Repeat until all values are in their proper positions

10

Insertion Sort

• An example:

original: 3 9 6 1 2

insert 9: 3 9 6 1 2

insert 6: 3 6 9 1 2

insert 1: 1 3 6 9 2

insert 2: 1 2 3 6 9

11

Insertion Sort

• Algorithm:
def insertion_sort (in_list):

for index in range(1, len(in_list)):

key = in_list[index]

position = index

Shift larger values to the right

while position > 0 and key < in_list[position-1]:

in_list[position] = in_list[position-1]

position -= 1

in_list[position] = key

12

Comparing Sorts

• The Selection and Insertion sort algorithms are
similar in efficiency

• They both have outer loops that scan all
elements, and inner loops that compare the
value of the outer loop with almost all values in
the list

• Approximately n2 number of comparisons are
made to sort a list of size n

• We therefore say that these sorts are of order n2

• Other sorts are more efficient: order n log2 n

13

Quicksort

• The approach of Quicksort:

– Reorganize the list into two partitions

– Recursively call Quicksort on each partition

• In more detail:

– Choose a "pivot" value from somewhere in the list

– Move values in the list so all elements smaller than the

pivot come before it, and all elements larger than the

pivot come after it

– Make recursive calls to Quicksort for the both partitions

– Keep doing this so long as partitions are of length > 1

14

Quicksort

• Main algorithm:
def quicksort (in_list, start, end):

if start < end:

partition the list around a pivot

p = partition (in_list, start, end)

sort the items less than the pivot

quicksort (in_list, start, p-1)

sort the items greater than the pivot

quicksort (in_list, p+1, end)

15

Quicksort
def partition (in_list, start, end):

pivot = in_list[end]

i = start

for j in range (start, end):

if in_list[j] <= pivot:

temp = in_list[i]

in_list[i] = in_list[j]

in_list[j] = temp

i += 1

temp = in_list[i]

in_list[i] = in_list[end]

in_list[end] = temp

return i

16

Merge Sort

• The approach of Merge Sort:

– Divide the list into two halves

– Sort each half, and then merge the two back together

• In more detail:

– So long as the input list has more than one item...

– Divide the list into (roughly) equal halves

– Call Merge Sort recursively on each half

– Merge the two (sorted) halves into a single sorted

list of items

– A list of length 1 is considered "sorted" so it is returned

with no need for further recursive calls.

17

Merge Sort
• Algorithm:
def merge_sort (in_list):

Trivial : it is considered "sorted"

if len(in_list) <= 1:

return in_list

Sort each half of the list

first_half = merge_sort (in_list[:len(in_list)//2])

second_half = merge_sort (in_list[len(in_list)//2:])

Merge the two sorted halves

return merge (first_half, second_half)

18

Merge Sort

def merge (first, second):

result = []

while first and second:

if first[0] < second[0]:

result.append(first.pop(0))

else:

result.append(second.pop(0))

return result + max(first, second)

19

Comparing Sorts

• The Quicksort and Merge Sort algorithms are
similar in efficiency

• They both divide the list into two components
and then recursively call themselves on each
component.

• In the best case, approximately n log2 n number
of comparisons are made to sort a list of size n

• Therefore, we say these sorts are order n log2 n

• Although there are exception, these sorts are
considered much more efficient than order n2

20

Searching

• Searching is the process of finding a target
element within a group of items called the
search pool

• The target may or may not be in the search pool

• We want to perform the search efficiently,
minimizing the number of comparisons

• Let's look at two classic searching approaches:
linear search and binary search

• As we did with sorting, we'll implement the
searches with polymorphic comparability

21

Linear Search

• A linear search begins at one end of a list
and examines each element in turn

• Eventually, either the item is found or the
end of the list is encountered

• See the linear_search method in

search_code.py

• At worst, you may examine every single
item in the list!

22

Linear Search

• Algorithm:

def linear_search (in_list, target):

for item in in_list:

if item == target:

return item

return None

23

Binary Search

• A binary search assumes the list of items in the
search pool is sorted

• It eliminates a large part of the search pool with a
single comparison

• A binary search first examines the middle element
-- if it matches the target, the search is over

• If it doesn't, only half of the remaining elements
need be searched

• Since they are sorted, the target can only be in
one half of the other

24

Binary Search

• The process continues by recursively searching
one – and only one – half of the list

• Each comparison eliminates approximately half
of the remaining data

• Eventually, the target is found or there are no
remaining viable candidates (and the target has
not been found)

• At most, there will be log2 n recursive calls

• See the binary_search method in
search_code.py

25

Binary Search

• Algorithm:

def binary_search (in_list, target):
if len (in_list) < 1:
return None

else:
mid = len(in_list) // 2
if in_list[mid] == target:
return in_list[mid]

elif in_list[mid] > target:
return binary_search(in_list[:mid], target)

else:
return binary_search(in_list[mid:], target)

26

Binary Versus Linear Search

• The efficiency of binary search is good for
the retrieval of data from a sorted group

• However, the group must be sorted initially,
and as items are added to the group, it
must be kept in sorted order

• The repeated sorting creates inefficiency

• If you add data to a group much more often
than you search it, it may actually be worse
to use binary searches rather than linear

