
IT Security Principles

IT 444 – Network Security

Computer Memory

• An electronic mechanism to store and retrieve data

• The smallest amount of data is 1 bit (1 or 0 in
memory)

o4 bit = 1 nibble

o8 bits = 2 nibbles = 1 byte

o2 bytes = a word

o2 words = double word DWORD

Computer Memory

• Many types of memory, but we are focusing on
random access (RAM) and registers

oRegisters: special forms of memory embedded within
processor

oRAM: volatile. Data is lost from RAM when computer is off

• Modern Intel & AMD has the memory of 32 bit or 48
bit addressable (32 or 48 bit wide)

Memory segmentation

• Each process needs to have access to its own area in
memory.

o Memory is broken into segments

o Registers store and keep track of the current segment a process
maintains

o Offset registers keep track of where critical piece of data is kept in
the segment

• Each running process gets its own virtual address space...

Memory segmentation

• A basic 32-bit Windows process gets 4GB - 2GB is assigned to
the user-mode side and 2GB is assigned to the kernel-mode
side of the process

• A small portion of this virtual space within each process is
mapped to physical memory

Program in Memory

• When processes are loaded into memory, they are
basically broken into many small sections

oThe .text section, contains the machine instructions to get
the task done

oThe .data section is used to store global initialized variables (
int a =0;)

oThe below stack section (.bss) is used to store certain types
of global uninitialized variables (int a;)

Program in Memory

oThe heap section is used to store dynamically allocated
variables and grows from the lower-addressed memory to
the higher-addressed memory

oThe stack section is used to keep track of function calls
(recursively) and grows from the higher-addressed memory
to the lower-addressed memory on most systems

Memory space of a process

• Buffer: is a storage place used to receive and hold data until
it can be handled by a process

• Done by allocating the memory within the .data or .bss
section of the process’s memory

• The buffer may hold any predefined type of data

String and Pointer

• strings are just continuous arrays of character data in
memory

• The string is referenced by the address of the 1st char

• The string is ended by a null character (\0 in C)

• Pointers are special pieces of memory that hold the
address of other pieces of memory

• Keeping track of the items’ locations in memory is by
changing the info in pointers

What is Fuzzing

• One of the fastest ways to get into vulnerability
research is through software testing.

• Fuzzing is a class of software and hardware testing in
which the data used to perform the testing is
randomly generated

• Doesn’t require any knowledge about the internal
workings of software or the structure of the input
data

What is Fuzzing

• Types of Fuzzers

oMutation fuzzers

oGeneration fuzzers

oGenetic or evolutionary fuzzers

Fuzzers

• Mutation fuzzers: changing the input data in a
random way

oThe mutated data is then used as input for the target
software in order to try and trigger a software crash

• Generation fuzzers: white box fuzz testing –prior
knowledge of the internal workings of the protocol

oAble to generate test cases based on data models that
describe the structure of the data or protocol

Fuzzers

o the main problems with generation fuzzers is writing data
models

o the availability of specifications and documentation still
requires significant effort to correctly translate to a
fuzzing model

Fuzzers

• Genetic fuzzing: also called evolutionary fuzzing

oThe tool determines the best set of input tests, based on
maximizing code coverage over time

oThe fuzzer makes notice of input mutations that reach
new code blocks and saves those mutated inputs to the
body (corpus) of tests

oThe fuzzing tool can learn in a “survival of the fittest”
manner—thus the term genetic or evolutionary fuzzing

Crash Analysis

• There should be some logs for the target application crashes

• Sample file or data records that can be used to reproduce
the crash

• Application crash log files can be collected in many ways

o debugger will collect information about the CPU context, which
will be stored along with the crash sample file

• Crash logs provide a great first step in filtering and grouping
crashes into unique vulnerabilities

Crash Analysis

• When an application crash is detected, many custom scripts
can be run that collect specific types of information.

• The easiest way to implement such scripts is by extending
the debugger

• Using Peach as the framework produces some nice benefits
when you’re dealing with crashes. Peach uses WinDbg and
the !exploitable extension to gather contextual information
about a crash and to be able to perform some crash
clustering

Binary diffing

• When changes are made to compiled code such as libraries,
applications, and drivers, the delta between the patched and
unpatched versions can offer an opportunity to discover
vulnerabilities

• The most common target of binary diffs are Microsoft
patches

• Various tools are available to simplify the process of binary
diffing

Diffing

• Application: new versions – new features, code changes, new
security control or vulnerability fixes

o Identifying code changes related to vulnerability fixes is dependent on
limited disclosures

o Many organizations choose to release minimal information as to the
nature of a security patch

o The more clues we can obtain from this information, the more likely we
are to discover the vulnerability

• Patch diffing: organizations don’t patch their systems quickly.
Attackers and penetration testers can compromise these systems
with publicly disclosed or privately developed exploits

Binary Diffing Tools

• Manually analyzing is slow, not effective

• Free tools are available:
zynamics bindiff

turbodiff

patchdiff2

darungrim

diaphora

• You may experience different results when using each tool
against the same input files

Microsoft Patch

• Patches are acquired from the Microsoft Security Tech-Center
site

• Patches are obtained by WSUS or Control Panel

• Some updates are the result of a publicly discovered
vulnerability...

• ...whereas the majority are through some form of coordinated
private disclosure

Microsoft Patch

• Find the update info for the last time the files were patched

• This is important to note because you always want to diff the
versions closest together so that any changes to functions
are associated with the CVEs in which you are interested

• We can use tools such as “PatchExtract” for easy extraction

• PatchExtract is a PowerShell script that uses the Microsoft
“expand” tool to extract many files contained within the
downloaded MSU files

Diffing a MS Patch

• When extracting the patch, we can determine the xyz.dll was
updated.

• The first step is to disassemble these using the tool IDA (or
alike) and perform a diff.

• From the result, we can find:

o The changed file

o What DLL is being loaded . The goal is to identify what application
desire this DLL

Diffing a MS Patch

• Use the “Process Monitor” tool to find the path to the DLL
file found previously

• Try Microsoft applications and use “Process Monitor” to
verify that the dll is loaded

• If we can craft a malicious DLL with msfvenom as our
payload, we should be able to get a remote session with the
vulnerable Windows system.

