
IT 341: Introduction to System Administration

Project 3:

Administering and Using a Distributed File System

Now that we have set up networking and Network Information Service (NIS) on your Virtual

Machine (VM), we can take advantage of this in order to implement some more advanced

features for your VMs file system. We will then build on this in order to enable new

practices, such as the use of SSH key pairs for user authentication and remote distribution

of system-level data updates.

Project II, Part A:

Implementing NFS

After completing this project every box (both it20 and your VMs) will serve both

• as a server (in that they will serve up their own homes)

• and as a client (in that they will auto mount everyone else’s homes).

Important: In this handout, we assume a few things:

1. The usernames abird, ajb and bja are defined on it20 – and so can authenticate to

other Linux machines on the network via NIS.

2. There is a home for abird on it20, i.e. at it20:/home/abird.

3. There is a home for ajb on it20, i.e. at it20:/home/ajb.

4. There is a home for bja on itvm28-8a, i.e. itvm28-8a:/home/bja.

These three homes will be moved. When you make the changes for your client host, you may

follow the example for bja below, but instead of exporting and (auto-) mounting the home

directory for bja, you will want to export and (auto-) mount the home directories for yourself

and for your partner. You will want to (auto-) mount the home directories of your classmates –

as was done for abird and ajb in the examples.

NOTE: The host itvm28-8a and its user, bja are only examples. Your client will be named

itvm2x-yz (where you should know x, y and z) with two usernames defined, one for you and

one for your partner. If you recall, these usernames were created for you – on it20 – as part of

the previous project...

On the Server1, it20

(This much, I or previous admins have already done. You should just read it, in order to

understand the server-side configuration done on it20.):

1. Download and install the required NFS packages:

sudo apt-get update

sudo apt-get install nfs-common

 sudo apt-get install nfs-kernel-server

2. Download and install autofs

 sudo apt-get install autofs

3. Move the homes to another dir, from the root / directory, by changing the home dir's

name

 sudo mv /home /home.it20

4. Create a new empty directory to use as a mount point. Call it /home

sudo mkdir /home

5. Edit /etc/passwd to say where user sysadmin’s home is:
...

landscape:x:104:109::/var/lib/landscape:/bin/false

sysadmin:x:1000:1000:sysadmin,,,:/home.it20/sysadmin:/bin/bash

dhcpd:x:105:113::/var/run:/bin/false

abird:x:1001:1001:Al Bird,,,:/home.it20/abird:/bin/bash

...

We want user sysadmin, on it20 and on all the clients, to be local and so not part of

NFS. Having sysadmin allows us access to any host, whether or not NFS is running

properly. So we are explicit as to where its home is (its new path location).

5. Edit /etc/exports so as to export these homes:

/etc/exports: the access control list for filesystems,

which may be exported

to NFS clients. See exports(5).

Example for NFSv2 and NFSv3:

/srv/homes hostname1(rw,sync) hostname2(ro,sync)

Example for NFSv4:

/srv/nfs4 gss/krb5i(rw,sync,fsid=0,crossmnt)

/srv/nfs4/homes gss/krb5i(rw,sync)

/home.it20 10.0.0.0/24(rw,sync,no_root_squash,no_subtree_check)

1https://help.ubuntu.com/community/SettingUpNFSHowTo
 https://help.ubuntu.com/16.04/serverguide/network-file-system.html

https://help.ubuntu.com/community/SettingUpNFSHowTo
https://help.ubuntu.com/14.04/serverguide/network-file-system.html

6. Edit /etc/auto.master to tell autofs about the map for /home. The directory

/home must exist and must be empty. It must not have any files in it. Remember we

moved the /home directory earlier in the project.

$Id: auto.master,v 1.4 2005/01/04 14:36:54 raven Exp $

Sample auto.master file

This is an automounter map and it has the following format

key [-mount-options-separated-by-comma] location

...

#/net /etc/auto.net

/home /etc/auto.home

7. And, define the map: /etc/auto.home

Ampersand in the RHS matches the key itself.

abird it20:/home.it20/&

ajb it20:/home.it20/&

it341 it20:/home.it20/&

bja itvm28-8a:/home.itvm28-8a/&

...

...

That is it for now. We will return to this file later to make sure homes on other boxes get

mounted.

The Clients (e.g. itvm28-8a here)

The task on the clients is similar. In fact, when it comes to NFS we are all both servers and

clients. We are servers in that we serve up (or export) our local home directories to the

network. We are clients in that we (auto) mount the local directories that are served up

(exported) by other hosts on the network.

Of course, in these examples, both itvm28-8a and user bja are just examples. You will want

to use your itvm2x-yz (replacing x, y and z with the actual values) and your usernames.

1. Download and install the required NFS and auto-mounting packages.

sudo apt-get update

sudo apt-get install nfs-common

 sudo apt-get install nfs-kernel-server

 sudo apt-get install autofs

Installing the application nmap is also recommended:

sudo apt-get install nmap

2. Move the homes to another location, from the root / directory, by changing the name

of the original /home directory, incorporating your VM's name

 sudo mv /home /home.itvm2x-yz Example: sudo mv /home /home.itvm28-8a .

3. Create a new, empty directory to use as a mount point. Call it /home

sudo mkdir /home

4. On every host (both the server and clients) we want user sysadmin to be a truly local

user and not part of NFS. Edit /etc/passwd to say where user sysadmin’s home is:

sudo nano /etc/passwd

...
libuuid:x:100:101::/var/lib/libuuid:/bin/sh

landscape:x:102:108::/var/lib/landscape:/bin/false

sysadmin:x:1000:1000:sysadmin,,,:/home.itvm28-8a/sysadmin:/bin/bash
sshd:x:103:65534::/var/run/sshd:/usr/sbin/nologin

statd:x:104:65534::/var/lib/nfs:/bin/false

...

5. Depending on the editor you are using you may get an error message. Ignore it. At this

point sysadmin does not have a home directory. Why? Think about it and be

prepared to address it in the discussion questions. You need to logout and log in

again. Then sysadmin will again have a home directory.

6. Edit /etc/exports so as to export our homes: sudo nano /etc/exports

/etc/exports: the access control list for filesystems,

which may be exported to NFS clients. See exports(5).

Example for NFSv2 and NFSv3:

/srv/homes hostname1(rw,sync) hostname2(ro,sync)

Example for NFSv4:

/srv/nfs4 gss/krb5i(rw,sync,fsid=0,crossmnt)

/srv/nfs4/homes gss/krb5i(rw,sync)

/home.itvm28-8a 10.0.0.0/24(rw,sync,no_root_squash,no_subtree_check)

6. Edit /etc/auto.master to tell autofs about the map for /home. The directory

/home must exist and must be empty. It must not have any files in it. Remember we

moved the /home directory earlier in the project. (Do not worry about your file's current

contents. Just focus on adding the specified line at the end.)

sudo nano /etc/auto.master

Sample auto.master file

This is an automounter map and it has the following format

key [-mount-options-separated-by-comma] location

For details of the format look at autofs(5).

#/misc /etc/auto.misc

NOTE: mounts done from a hosts map will be mounted with the

"nosuid" and "nodev" options unless the "suid" and "dev"

options are explicitly given.

#/net -hosts

Include central master map if it can be found using

nsswitch sources.

Note that if there are entries for /net or /misc (as

above) in the included master map any keys that are the

same will not be seen as the first read key seen takes

precedence.

/home /etc/auto.home

7. Then, back to the server it20, an administrative user – in other words, a sudo-er – will

need to edit /etc/auto.home to mount bja’s home:

Ampersand in the RHS matches the key itself.

abird it20:/home.it20/&

it341 it20:/home.it20/&

ajb it20:/home.it20/&

bja itvm28-8a:/home.itvm28-8a/&

...

By the time your reach this step, the file /etc/auto.home on it20 will have been

edited so that it contains a line with your username and where your home can be found

on the network. You will need to copy the file /etc/auto.home from it20 to the

same absolute filepath on your virtual machine. This is best accomplished using scp

sudo scp it341@it20:/etc/auto.home /etc/auto.home

8. Eventually, all clients will have exported all of their home directories, as well as copied

over the /etc/auto.home file from it20. We will all (server and clients) want to

automount all homes from all servers; indeed, /etc/auto.home will look the same on

all hosts.

9. At this point, run two commands:

sudo service nfs-kernel-server restart

sudo service autofs restart

10. Now, we should be able to log on to any hosts (because NIS makes us known to our

network), and we should see our home directories on each of these hosts (because NFS

makes them available). This, of course, is true only to the extent that all hosts have

successfully implemented networking, NIS, and now NFS. Indeed, NFS makes it look like

there is just one common /home visible to all hosts. In reality, our own home directories

reside on our own hosts (as /home.itvm2x-yz) but we export them to the network

and each host automounts these under /home, as needed.

11. You may notice that if, on your VM, you cd to /home, you may not see all home

directories; it may look as follows:

abird@it20:~$ cd /home
abird@it20:/home$ ls
abird

NOTE: There is no actual

user named "bja" – that

username is just an

example!

But, when you explicitly ask for another user's home...

abird@it20:/home$ ls bja
abird@it20:/home$ ls

bja abird

This is because the automounter only mounts the directories on demand ... once you

actually refer to (or ask for) the directory explicitly, as in this example:

 abird@it20:/home$ ls bja

Project II, Part B:

Using ssh , scp , and sftp with Key‐Based Authentication

scp and sftp

When you install ssh, you also get scp, a secure copy for doing secure cp procedures from

one machine to another (actually, it is a secure version of rcp – remote copy), and sftp, a

secure version of ftp, that is a secure file transfer protocol. You can learn about both of these

by looking at their man

pages: man scp or man sftp (Of course, there is also a man page for ssh.)

scp is useful for quickly copying a file from one host to another. For example, say we are on

it20 and we wish to copy it20's /etc/hosts to itvm28-8a ...

(The following is just a demonstration of how the scp command can be used. It is not for you

to necessarily carry out yourself...)

• Rather than copy hosts directly to directory /etc on itvm28-8a ...

• ...it is safer to copy it to itvm28-8a’s /tmp – a directory for holding files temporarily

• Then, once we log on to itvm28-8a, we can move it into place (perhaps after saving a

backup copy of itvm28-8a’s original /etc/hosts).

• Anyway, we can use scp to do the copy:
abird@it20:~$ scp /etc/hosts itvm28-8a:/tmp

abird@itvm28-8a's password:
hosts 100% 628 0.6KB/s 00:00

abird@it20:~$

Let's look closer at this command: scp /etc/hosts itvm28-8a:/tmp

1. The first argument to scp is the source we want to copy. Because it is a local source – on

the host we are currently logged into – we need not specify the host.

2. The second argument tells scp the destination where it should copy the file:

a. the host: itvm28-8a:

b. the target directory on that host: /tmp

3. Notice scp needs abird’s password on itvm28-8a. (Of course, because of NIS,

abird’s password is the same on all hosts on the network – a good thing.)

We can also copy files from elsewhere to our own host. For example, to copy itvm28-8a’s

/etc/hosts file to it20’s /tmp, we could say:

abird@it20:~$ scp itvm28-8a:/etc/hosts /tmp

abird@itvm28-8a's password:

hosts 100% 624 0.6KB/s 00:00

abird@it20:~$

(This time, because the source is remote, we do specify a host. Because the destination is local, no

host.)

Again, we are asked for abird’s password on itvm28-8a

We can recursively copy whole directories from one host to another. For example, to copy

itvm28-8a’s entire /etc to our (it20’s) /tmp, we would say

abird@it20:~$ scp -r itvm28-8a:/etc /tmp

abird@itvm28-8a's password:

defaultdomain 100% 6 0.0KB/s 00:00

adjtime 100% 48 0.1KB/s 00:00

global 100% 459 0.5KB/s 00:00

config 100% 1568 1.5KB/s 00:00

mtab 100% 629 0.6KB/s 00:00

scp: /etc/shadow: Permission denied

…

a whole lot of files

…

README 100% 371 0.4KB/s 00:00

K16dhcdbd 100% 1506 1.5KB/s 00:00

abird@it20:~$

Notice that scp will not copy /etc/shadow across; if it did allow it, anyone could take a look

at a host’s /etc/shadow, whether they were sudoers or not. If you want to have full access,

you should work as user root. (Or, you should ask yourself if you really want to have such full

access – you can really do damage to your system!)

Key‐Based Authentication

One thing you may have noticed is that it would be a lot easier if we could push stuff (common

files, etc.) from it20 out to the client itvm28-8a. And we would like to do so without having to

supply a password every time.

So, we will set up key‐based authentication. Following the text, we will use a non‐empty

passphrase. Of course, this puts us back in the position of having to supply a pass phrase in

place of a password. But we can then use ssh‐agent for managing the passphrase exchange

whenever we are challenged. As you have read in the text, ssh‐agent caches the passphrase

in memory while the current shell is active; when the shell dies, the pass phrase goes with it.

OK, so now our ssh client is it20 and our ssh servers (from whom we want to push out files)

are the VMs. In our example, we will set up key‐based authentication with itvm28-8a; we use

it here only as an example.

On the virtual server:

1. You should first read the section on key‐based authentication in the textbook.

2. Log in to your VM as yourself. For the user Al Bird, and in the examples below, it’s abird. When

you do this, use your own username that we created for you on it20 in the previous project.

3. The first thing we have to do is generate a public/private key pair with the ssh‐keygen utility.

We will use the passphrase qazxsw (which is easier to type than you might think).

abird@itvm28-8a:~$ ssh-keygen -t rsa -b 2048
Generating public/private rsa key pair.
Enter file in which to save the key (/home/abird/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/abird/.ssh/id_rsa. Your public

key has been saved in /home/abird/.ssh/id_rsa.pub.

The key fingerprint is:
2e:98:6f:72:9f:70:9c:37:11:c1:fc:ed:91:9b:b8:09 abird@itvm28-8a

The key's randomart image is:
+--[RSA 2048]----+
| o. |
| o. |
| |
| .. + |
| S . o + |
| o o .E.. + |
| o o = o. o |
| ..o+ o .o |
| +..o |
+-----------------+
abird@itvm28-8a:~$

4. Append the content of /home/abird/.ssh/id_rsa.pub

to /home/abird/.ssh/authorized_keys

...thus insuring that any file there already is not overridden; if the authorized_keys

file doesn’t already exist, it will be created.

abird@itvm28-8a:~$ cd .ssh

Leave blank

and press Enter

Type qazxsw

abird@itvm28-8a:~$ cat id_rsa.pub >> authorized_keys abird@itvm28-8a:~$

ls -l
total 20
-rw-r--r-- 1 abird abird 598 2011-03-22 14:01 authorized_keys

-rw------- 1 abird abird 736 2011-03-22 13:56 id_rsa

-rw-r--r-- 1 abird abird 598 2011-03-22 13:56 id_rsa.pub

-rw-r--r-- 1 abird abird 7096 2011-03-21 10:12 known_hosts

abird@itvm28-8a:~$

Recall, the >> denotes an append.

5. Now ssh to another machine to see if it works. (NOTE: This is assuming that both your VM

and the target machine have successfully implemented NFS!)

abird@itvm28-8a:~$ ssh itvm26-7c
Enter passphrase for key '/home/abird/.ssh/id_rsa':
Linux it20 2.6.32-29-generic-pae #58-Ubuntu SMP Fri Feb 11

19:15:25 UTC 2011 i686 GNU/Linux
Ubuntu 10.04 LTS

Welcome to Ubuntu!
* Documentation: https://help.ubuntu.com/

System information as of Tue Mar 22 14:04:04 EDT 2011

System load: 0.0 Memory usage: 13% Processes: 85

Usage of /: 7.3% of 18.82GB Swap usage: 0% Users logged in: 0

Graph this data and manage this system at

https://landscape.canonical.com/

Last login: Tue Mar 22 14:01:02 2011 from itvm28-

8a.it.cs.umb.edu

abird@itvm26-7c:~$

Instead of asking for abird’s password, it asks for the passphrase for abird’s

authentication key. Make sure you understand why this works. Be prepared to write about
it in your discussion questions....

6. We can make even more progress. We would like to be able to ssh into other machines

without having to supply the passphrase each time. The ssh‐agent utility allows us to do

this within the scope of a single, ongoing login session.

7. Again, let us log out and return to itvm28-8a. Here we invoke ssh‐agent with the name
of the shell we want to use as its argument:

abird@it20:~$ exit
Connection to it20 closed.

abird@itvm28-8a:~$ ssh-agent /bin/bash

abird@itvm28-8a:~$

8. We now invoke ssh‐add

abird@itvm28-8a:~$ ssh-add
Enter passphrase for /home/abird/.ssh/id_rsa:
Identity added: /home/abird/.ssh/id_rsa (/home/abird/.ssh/id_rsa)

abird@itvm28-8a:~$

ssh‐add adds RSA (or DSA) identities to the authentication agent, ssh‐agent. When run

without arguments, it adds the files

~/.ssh/id_rsa, ~/.ssh/id_dsa and ~/.ssh/identity. Alternative file names can

be given on the command line. If any file requires a passphrase, ssh‐add asks for the

passphrase from the user.

9. Now, let’s try to log into it20 again.

abird@itvm28-8a:~$ ssh it20
Linux it20 2.6.32-29-generic-pae #58-Ubuntu SMP Fri Feb 11

19:15:25 UTC 2011 i686 GNU/Linux
Ubuntu 10.04 LTS

Welcome to Ubuntu!
* Documentation: https://help.ubuntu.com/

System information as of Tue Mar 22 14:09:50 EDT 2011

System load: 0.0 Memory usage: 13% Processes: 84
Usage of /: 7.3% of 18.82GB Swap usage: 0% Users logged in: 0

Graph this data and manage this system at

https://landscape.canonical.com/

Last login: Tue Mar 22 14:04:04 2011 from itvm28-

8a.it.cs.umb.edu

abird@it20:~$

Great! The point of this is that, once your authentication key is available on all hosts, thanks to

NFS mounting your home directory, you can use ssh‐agent and ssh‐add to set up a shell

from which you can perform an ssh-based task (ssh, scp, sftp, rdist, etc.) without being

challenged for a password or passphrase.

Project II, Part C:

Using rdist to Distribute Files

Now that you can get to other machines without supplying a password or pass phrase each time,
we can set about automatically distributing files to the clients. This is something we would want to
do in an industrial-strength network. There are two tools that are useful to this task: rdist and

sed. rdist is used to distribute files; sed is used to modify them slightly to accommodate the

specifics of various hosts on the network. We’ll look at rdist here and sed in Assignments 3/4.

rdist stands for "remote distribution". It is used to distribute files from one host to others. The
idea is, that when one wants to maintain files that are to be identical on many hosts, one
maintains them on one host – making modifications to files only on that host – and then uses
rdist to distribute them to the other hosts. If the files on the various machines get out of sync,

you just run rdist.

One might ask, what’s the difference between rdist and rsync? The answer is: it’s a matter of

purpose.

• rdist is for distributing files on the network

• rsync is for backing up (and restoring) file systems. We will explore rsync in the next

project...

Each has behaviors particular to its purpose. What might be a scenario where you would want to
use rdist? Where you would want to instead use rsync? Be prepared to address this in your

discussion questions.

Installing rdist:

The first thing we have to do is install rdist, on our host; I’ve installed it on it20 but you can

install yours on your virtual machine server/client2. Assuming you are logged in as
sysadmin…do this:

sudo apt-get update 3

sudo apt-get install rdist

Now, log out of sysadmin, and log in as yourself. We are taking advantage of the fact that we set up
key authentication in the last part of the project. (NOTE: You cannot complete this unless you have
successfully implemented key-based authentication from earlier!)

Configuring rdist:

(You will do this part by creating myrdist, making it executable, and creating Distfile)

2 In practice, one chooses a single host, usually a server from which to distribute files but we are just playing here – so play
away.
3 When you do this, it is a good idea to install any updates available.

(If you are not familiar with scripting in a Linux-based environment, consider brushing up on this
topic. Google phrases like linux shell script tutorial)

By default, rdist uses the (non-secure) rsh for transport. We want to use the more secure ssh.

So, we create our own script myrdist – which invokes rdist with the proper parameters:

We start by creating the myrdist file (which each partner should do):

johndoe@itvm28-8a:~$ nano myrdist

• Add the following to the file:
•
#!/bin/sh

A preconfigured rdist that uses ssh

SSH="`which ssh`"

RDISTD="`which rdistd`"

rdist -p "$RDISTD" -P "$SSH" "$@"

Save the file, and make sure that this file is executable:

chmod 755 myrdist

Then, we must define a distfile (the default name is Distfile), which describes the sorts of
distributions we might want to do. A distfile is similar to make’s makefile; it provides for a list of

target tasks, and specifies how each task is to be carried out.

(The following is just an example, for illustrative purposes only...)

Consider where we want to copy /etc/hosts from the local client to itvm28-1b

• The hosts: label specifies the target operation to conduct

• and what follows describes what must be done:

Distfile for distributing files

hosts: /etc/hosts -> (itvm28-1b)

install /etc/hosts ;

This specifies that to satisfy the target hosts, we copy file /etc/hosts to itvm28-1b, and
install it as /etc/hosts there. (Again, you should not actually do this!!!)

Be extremely careful; a wrong Distfile can cause havoc! See below.

Running rdist
 To run rdist, we simply type rdist, or to use our configured version, myrdist. But

before doing so, we can modify our Distfile by adding a verify option to the install:

Distfile for distributing files

hosts: /etc/hosts -> (itvm28-1b)

install -overify /etc/hosts ;

This says what rdist would do in the current environment, but it doesn’t actually do it. rdist

generally only overwrites files whose modify dates are older than the files being copied, although
one may change this behavior using options. See the rdist man page.

What are some of the most important options available for rdist? Why is that? Be prepared to

write about this in your discussion questions...

Play in a sandbox

Before using rdist to distribute files to an important directory such as /etc, set up a sandbox
and practice there. For example, use /tmp as the destination directory.

NOTE: The following section is not intended to be carried out by you. It is just here to serve as an
example.

Distfile for distributing files

hosts: /etc/hosts -> (itvm28-1b)

install /tmp/hosts ;

To execute rdist, we simply type

rdist

Be careful because rdist can overwrite a directory with a file. Saying

hosts: /etc/hosts -> (itvm28-1b)

install /etc/hosts ;

is fine as you specify a file name as the destination; rdist will write a new hosts file in /etc.

However…

hosts: /etc/hosts -> (itvm28-1b)

install /etc ;

is disastrous. It would overwrite the /etc directory with the file hosts, removing /etc contents
altogether. (It has happened to previous instructors!)

On the other hand, if you are distributing several files, as in…

hosts: (/etc/hosts /etc/nsswitch.conf) -> (itvm28-1b)

install /etc ;

…then the behavior is as you would expect: the two files hosts and nsswitch.conf are copied
into directory /etc on itvm28-1b. What precautions can you take in order to keep yourself

from making such? These will be addressed in the discussion questions...

Also, you can ask that one directory overwrite another directory. The following would overwrite
/etc on itvm28-1b with the /etc on the machine running rdist

hosts: /etc -> (itvm28-1b)

install /etc ;

An Exercise (Do this)

As an exercise, on your client, we will start by copying /etc to /tmp

johndoe@itvm28-8a:~$ cp -r /etc /tmp/etc_copy

(NOTE: Because you are using your personal account – instead of sysadmin – you will get
Permission denied for some specific file paths, on account of file permissions. This is okay, as
long as you were able to copy some of /etc into /tmp/etc_copy)

Confirm that some of /etc was copied over:

johndoe@itvm28-8a:~$ ls -l /tmp/etc_copy

Each partner should do this next step:

Write a Distfile that copies some of those files that we have been defining, and that we want on

all clients, over to another client

johndoe@itvm28-8a:~$ nano Distfile

Your Distfile will need three components:

• The local source: Your VMs /tmp/etc_copy directory

• The target machine: Some VM other than yours that has also installed rdist
• The target install location: A /tmp/your_username/etc_copy directory on that machine.

For user johndoe, that would be/tmp/johndoe/etc_copy

Save Distfile and then run myrdist (this assumes the user has also created the myrdist file

per earlier instructions...):

johndoe@itvm28-8a:~$./myrdist

To confirm this worked, you can then ssh into the target machine and see if the directory was
created with the appropriate contents...

Experiment with various Distfiles. And, be careful! Never use a target that doesn’t involve
/tmp

Discussion Questions:

1. After you edit /etc/passwd on your VM, you might get an error message to the

effect that sysadmin does not have a home directory.

a. Whether or not you experience this, why could something like that happen?

b. After you log sysadmin out -- and then back in -- sysadmin should have a

home directory once more. Why would this be the case?

2. How is mounting other users' homes in this project dependent upon the correct

configuration of networking and NIS in Project 2?

3. When you make changes in your home directory (such as adding, deleting, or

editing files) while logged into it20 or someone else's VM, why do those changes

persist in your home directory, as it exists on your own VM?

4. What differentiates ssh, scp, and sftp from their non-secure counterparts (rsh,

rcp, and ftp)? In other words, what makes them "secure"?

5. In Part II, Step #5, we saw that the example user abird was prompted for a

passphrase instead of a password. Why does this occur?

6. Using key pairs...

a. When a user (on his/her local machine) authenticates to a remote host using a

key pair, what are the respective roles of the public and private keys?

b. Which keys (public vs. private) must be on which hosts (local vs. remote) for

authentication to take place, and why is this the case?

7. How does NFS-based mounting enable us to create one pair of key files in our home

directories – in our .ssh folders – and then be able to log into (and from) any Linux

machine within the IT Lab LAN?

8. Identify some of the most important options to the rdist command and explain

their significance.

9. If you were going to use rdist to push an update to other machines' /etc

directories, what are some precautions you can take to ensure that you do not

accidentally damage/destroy any essential files on those machines?

10. How can ssh-agent make it easier to execute the rdist command?

