
IT341 Introduction to System Administration

Project 4 - Backup Strategies with rsync and crontab

Backup is one of the most important things a system administrator does. It is important to
decide what data on your network is important, and to back that data up on a regular basis.
Preferably, the backup process is automated. It’s not a matter of if you will have to go to a
backed-up archive for restoring a corrupted directory or file system, but when. As the bumper
sticker says: Things (sic) happen.

A nice list of ten open-source backup programs may be found at
http://www.techrepublic.com/blog/10-things/10-outstanding-linux-backup-utilities/. One of these is
rsync. What’s nice about rsync is that it is a command-line program and so can be invoked

from with other scripts, providing for automation. rsync can be invoked directly or it can be
set up as a daemon so as to keep a backed-up archive in sync with the working copy. rsync is
one of the most widely used Linux backup tools.

Most of the work we have been doing involves /etc and perhaps /home.itvm2x-yz on
each host; /etc seems to be the most important. Once we have decided what data is important
to us, we must decide where to back it up to. There are several possibilities:

1. Somewhere else on the same host (like another disk), under the assumption that it’s
unlikely that two disks will fail at once.

2. On a disk on another host, under the assumption that it is even less likely that two disks
on two hosts will fail at the same time.

3. On a DVD or a tape; these can be stored elsewhere, off site (protecting us from fire). The
downside is that we require additional human intervention.

4. (More recently) In the cloud, where they will likely be further backed up and accessible from

different locations. This, however, requires that you be able to trust your cloud provider and

their security measures.

For our little network, we will go for the second option. It is unlikely that two disks on two
hosts will fail at the same time. If there is a major fire, data backup is the least of our problems
in this short semester. Also, the backup process can be automated (say, using a cron process
for scheduling backups).

Part I - Invoking rsync Directly

1. For the server and each client, we must choose a location to use for the backup files. We

will use the /it341_backups directory tree on it20 for a location. Each team will have a

subdirectory named after their virtual machine and will store their backups inside of it. For

example, the team itvm23-7b would have the following directory:

/it341_backups/itvm23-7b

DRAFT

http://www.techrepublic.com/blog/10-things/10-outstanding-linux-backup-utilities/

2. In addition, there will also be a group on it20, named after your team. You and your

partner will belong to that group. Your backup directory will be owned by root, but its
group will be yours. For example, the backup directory for itvm23-7b would look as
follows:

drwxrwx--- 2 root itvm23-7b 4096 Apr 25 16:29 itvm23-7b/

By virtue of group membership, you and your partner will have full permissions on your
backup directory.

3. Each backup will have a subdirectory named for the date of the backup. For example, on April

17, 2012 we will name the subdirectory 04172012. The fully qualified directory would be
/it341_backups/itvm23-7b/04172012

4. For example, say we are backing itvm28-2b to it20; again, this is just an example. We

must first create a location on it20. We log onto it20 as ourselves and change our

working directory to /it341_backups/itvm28-2b (These directories have already

been created. See me if you have difficulties with access and/or writing.) Execute a pwd

command, to ensure you are in the correct location, and make sure you are able to create

files/subdirectories inside there.

5. So we exit, returning to itvm28-2b, and execute a rsync command. Pay particular
attention to who you are logged into your VM as versus who you are logging into it20 as!
(Note that some commands may be too long for this page and wrap to the next line):

sysadmin@itvm28-2b:~$ sudo rsync -azvv -e ssh /etc

abird@it20.it.cs.umb.edu:/it341_backups/itvm28-2b/04172012

opening connection using: ssh -l abird it20.it.cs.umb.edu

rsync --server -vvlogDtprze.iLsf . /it341_backups/itvm28-

2b/04172012

abird@it20.it.cs.umb.edu's password:

sending incremental file list

created directory itvm28-2b/04172012

delta-transmission enabled

etc/

etc/.pwd.lock

etc/adduser.conf

etc/at.deny

etc/auto.home

etc/auto.home.bak

...

<lots more files>

...

etc/xml/

etc/xml/catalog

etc/xml/catalog.old

etc/xml/xml-core.xml

etc/xml/xml-core.xml.old

NOTE: This

is one

command.

You do not

press Enter

after /etc

total: matches=0 hash_hits=0 false_alarms=0 data=1840375

sent 742037 bytes received 17334 bytes 35319.58 bytes/sec

total size is 1860318 speedup is 2.45

sysadmin@itvm28-2b:~$

Who are you logged into your VM as? And...what username did you use to log into it20? What
is the reason for this? Be prepared to address this in your discussion questions.

This invocation of rsync requires a little explanation:

a. The options –azv,

i. the a stands for archive mode and is equivalent to –rlptgoD

In other words...
• a recursive copy
• copying links as links
• creating parent directories as necessary
• preserving times, groups and owners
• preserving devices.

ii. the z says data should be compressed to save space, and

iii. the vv stands for very verbose output; there’s v for verbose, vv for very

verbose, and vvv for even more verbose.

b. The option -e ssh specifies the remote shell to be used for doing the transfer; ssh is
safest.

c. The first path is /etc , the directory on the local machine (in the previous example, that
is itvm28-2b) that we want to back up. If it were /etc/, then the contents of /etc
would be archived. What is the difference? Be prepared to address this in your

discussion questions.

d. The second part, abird@it20.it.cs.umb.edu:/it341_backups/itvm28-2b/04172012,
is the archive location – where we want to store the backup. We log in as abird, so we
will be challenged for abird’s password. You could log in as yourself, or whatever.
Notice that we cannot use the account sysadmin because it is local to your virtual
machine!

Restoring Files From an Archive

To restore a file system from an archive, we simply run rsync backwards. One such example
would be the following. (But don’t do this!!!):

sudo rsync -azvv -e ssh abird@it20.it.cs.umb.edu:/it341_backups/itvm28-

2b/04172012 /tmp/etc

Were we to run this on itvm28-2b, we would copy the contents of the archive back into the

/tmp/etc directory on itvm28-2b – where we could then locally copy the files into /etc.
(Again, DO NOT DO THIS!)

Of course, when acting as a system administrator, we might run such commands as root (on
both systems), but we don’t want to risk hurting ourselves here!

When To Do Backups?

The question arises: when should we back up our file systems? It depends. For this course, it
might be good to back up each host once a week – once each new service (e.g. NIS, NFS, and
DNS) has been successfully installed. We can make the process easier (and so more likely that
we will do it) if we write a simple script.

As sysadmin, create and edit this file, /usr/local/bin/backup

You can use the command sudo nano /usr/local/bin/backup

Add the following contents:

#!/bin/bash

backup dir -- takes one argument. dir which names a repository.

rsync -azvv -e ssh /etc $2@it20.it.cs.umb.edu:/it341_backups/`hostname`/$1

Notice that /usr/local/bin is in $PATH:

sysadmin@itvm28-2b:~$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

sysadmin@itvm28-2b:~$

Then, make backup executable,

sysadmin@itvm28-2b:~$ sudo chmod +x /usr/local/bin/backup

We can execute it with an argument to name the archive:

sysadmin@itvm28-2b:~$ sudo backup 04172012 abird

[sudo] password for sysadmin:

opening connection using: ssh -l abird it29.it.cs.umb.edu rsync --

server -vvlogDtprze.iLsf . /it341_backups/itvm28-2b/02142012

abird@it20.it.cs.umb.edu's password:

sending incremental file list

created directory /it341_backups/itvm28-2b/02142012

delta-transmission enabled

etc/

etc/.pwd.lock

etc/adduser.conf

etc/at.deny

etc/auto.home

etc/auto.home.bak

…

Now, if we log on to it20 as abird, we can do an ls to see the archive we have just created:

abird@it20:~$ ls -l /it341_backups/itvm28-2b/04172012

total 4

drwxr-xr-x 3 abird abird 4096 2012-04-17 01:02 04172012

abird@it20:~$

Each partner should attempt the backup script. One partner should do this with their
own personal account, and the other should do this with the sysadmin account. If your
first attempt fails, then figure out what went wrong and try again.

Backing up file systems manually requires that we remember to do so. A better solution might
be to automate the backup process…

Part 2 -- Automating the Backup Process

1. Make sure your Ethernet cable is plugged into the right-hand side

This is the jack that communicates with our server, it20, whose domain has the

name it.cs.umb.edu. (If need be, review your notes about Ethernet jacks)

2. Log in to your virtual machine as sysadmin

3. Create the directory /guests

You need to create a directory that other machines can use for backups. This

directory should be in the root directory /

 cd /

 sudo mkdir guests

4. Make this directory available to all users

 sudo chmod 777 guests

5. Go to /usr/local/bin

 cd /usr/local/bin

6. Create the script autobackup.sh

 sudo nano autobackup.sh

Enter the following:

 #! /bin/bash

 #

 # shell script to perform daily backups of /etc

 if [$# -lt 2]

 then

 echo Usage: $(basename $0) BACKUP_HOST BACKUP_DIRECTORY

 exit 1

 fi

 backup_host=$1

 backup_dir=$2

 date=$(date +%F)

 rsync -azvv -e ssh /etc $backup_host.it.cs.umb.edu:$backup_dir/$date

7. Make this file executable:

 sudo chmod 755 autobackup.sh

8. Logout sysadmin

 exit

9. ssh into another virtual machine with your personal account

It should be a machine where you can log in without a password, as of Project 6. Also,

the sysadmin of the other VM will need to have

completed Step 4 above, so that you can do Step 10...

10. Create a directory for your backups

 cd /guests

 mkdir VIRTUAL_MACHINE_NAME

11. Exit the ssh connection

 exit

VIRTUAL_MACHINE_NAME

refers to your own VM. For

example, itvm24-2a

OTHER_VIRTUAL_MACHINE

refers to the other VM where you

are placing your backups. For

example, itvm26-2a

12. Run autobackup.sh

autobackup.sh OTHER_VIRTUAL_MACHINE /guests/VIRTUAL_MACHINE_NAME

13. Check to see if the script worked:

ssh YOUR_UNIX_USERNAME@OTHER_VIRTUAL_MACHINE 'ls /guests/VIRTUAL_MACHINE_NAME'

Here, we are using a feature of ssh that allows you to run a Unix command on the

remote machine without logging in. You should see a directory whose name is

today's date in YYYY-MM-DD format.

14. Remove the backup directory on the other virtual machine you just created:

ssh YOUR_UNIX_USERNAME@OTHER_VIRTUAL_MACHINE 'rm -rf /guests/VIRTUAL_MACHINE_NAME/TODAYS_DATE'

15. Check to make sure the backup directory has been removed:

ssh YOUR_UNIX_USERNAME@OTHER_VIRTUAL_MACHINE 'ls /guests/VIRTUAL_MACHINE_NAME'

16. Create a cron job to run autobackup.sh

(BEFORE CONTINUING: Read the bullet points below, as well as my note at the

bottom regarding “Making crontab work with ssh-agent”)

 After you have...

• read through the end of this document completely

• and completed the preparatory steps for the keychain utility

...run crontab

 crontab -e

• If you have not created cron jobs on this machine yet, then there should be

nothing in this file.

• Create an entry to run autobackup.sh in 5 minutes.

• To do this, you will have to look at the time and pick a time 5 minutes ahead.

• Remember that cron uses a 24-hour clock, so 1 PM is written at 13.

• (To help with this, research the format of a crontab File)

• The command part of the cron job should look like this:

/usr/local/bin/autobackup.sh OTHER_VIRTUAL_MACHINE /guests/VIRTUAL_MACHINE_NAME

17. Check the other virtual machine to make sure the backup worked:

ssh YOUR_UNIX_USERNAME@OTHER_VIRTUAL_MACHINE 'ls /guests/VIRTUAL_MACHINE_NAME'

18. Take a snapshot of the current state of your virtual machine:

Select VM → Snapshot → Take snapshot

In the Name box type

Project 4, Part II

then click Take Snapshot.

Making crontab work with ssh-agent

I have seen that crontab and ssh-agent do not always play well together.

Specifically, even if you have an ssh-agent running, it may not recognize it when

running autobackup.sh from crontab. To make this work, I recommend the following

steps:

1. On your VM, as sysadmin, execute the following command:

sudo apt-get install keychain

2. On your VM, as sysadmin, add the following line to your script code, right

above the rsync line:

source $HOME/.keychain/$(/bin/hostname)-sh

3. On your VM, as yourself (i.e., your personal account), execute the following

command:

keychain $HOME/.ssh/YOUR_PRIVATE_KEY

(YOUR_PRIVATE_KEY will probably be either id_dsa or id_rsa)

4. Finally, as yourself, create the task in crontab, if you have not done so already.

It should work now because the previous steps created an ssh agent that should

persist after you log off (so long as your VM is still up and running).

5. If these steps do not work, then see if you can troubleshoot the issue and get it

to work. (If so, document this in your admin log.) If that fails, create a second

set of keys (this time, no passphrase), place the public key into your

authorized_keys file, and remove the keychain line from the script.

