# Finite Automata and Regular Languages (part II)

Prof. Dan A. Simovici

UMB



### 1 Nondeterministic Automata

#### Definition

A nondeterministic finite automaton (ndfa) is a quintuple  $\mathcal{M} = (A, Q, \delta, q_0, F)$ , where A is the input alphabet of  $\mathcal{M}$ , Q is a finite set of states,  $\delta : Q \times A \longrightarrow \mathcal{P}(Q)$  is the transition function,  $q_0 \in Q$  is the initial state, and  $F \subseteq Q$  is the set of final states of  $\mathcal{M}$ . We assume  $A \cap Q = \emptyset$ .

#### Example

Consider the ndfa

$$\mathcal{M} = (\{a, b\}, \{q_0, q_1, q_2, q_3, q_4\}, \delta, q_0, \{q_1, q_3\}),$$

whose transition function is defined by the table:

|       | State          |           |           |            |       |
|-------|----------------|-----------|-----------|------------|-------|
| Input | $q_0$          | $q_1$     | $q_2$     | <b>q</b> 3 | $q_4$ |
| а     | $\{q_1, q_2\}$ | Ø         | $\{q_3\}$ | Ø          | Ø     |
| Ь     | $\{q_0\}$      | $\{q_3\}$ | $\{q_4\}$ | Ø          | Ø     |

Note the presence of pairs (q, a) such that  $\delta(q, a) = \emptyset$ . We refer to such pairs as blocking situations of  $\mathcal{M}$ . For instance,  $(q_1, a)$  is a blocking situation of  $\mathcal{M}$ .

# Extending the transition function for an ndfa

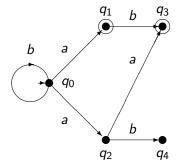
As in the case of the dfa, we can extend the ndfa's transition function  $\delta$ , defined on single characters, to  $\delta^*$ , defined on words. Starting from the transition function  $\delta$ , we define the function  $\delta^* : Q \times A^* \longrightarrow \mathcal{P}(Q)$  as follows:

$$egin{array}{rcl} \delta^*(q,\lambda)&=&\{q\}\ \delta^*(q,xa)&=&igcup_{q'\in\delta^*(q,x)}\delta(q',a) \end{array}$$

## Graphs of ndfas

- If M = (A, Q, δ, q<sub>0</sub>, F) is an ndfa, then the graph of M is the marked, directed multigraph G(M), whose set of vertices is the set of states Q.
- The set of edges of G(M) consists of all pairs (q, q') such that q' ∈ δ(q, a) for some a ∈ A; an edge (q, q') is labeled by the input symbol a, where q' ∈ δ(q, a).
- The initial state q<sub>0</sub> is denoted by an incoming arrow with no source, and the final states are circled.

If  $q' \in \delta^*(q, x)$ , then there is a path in the graph  $\mathfrak{G}(\mathfrak{M})$  labeled by x that leads from q to q'.



# Comparing dfas and ndfas

 In the graph of a dfa M = (A, Q, δ, q₀, F) you must have exactly one edge emerging from every state q and for every input symbol a ∈ A.

q 🛟

• In the graph of an ndfa  $\mathcal{M} = (A, Q, \delta, q_0, F)$  you may have states where no arrow emerges, or states where several arrow labeled with the same symbol emerge. Also, not every symbol needs to appear as a label of an emerging edge.





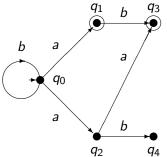
#### Definition

The language accepted by the ndfa  $\mathcal{M} = (A, Q, \delta, q_0, F)$  is

$$L(\mathcal{M}) = \{ x \in A^* \mid \delta^*(q_0, x) \cap F \neq \emptyset \}.$$

In other words,  $x \in L(\mathcal{M})$  if there exists a path in the graph of  $\mathcal{M}$  labeled by x that leads from the initial state into one of the final states. Note that it is not necessary that all paths labeled by x lead to a final state; the existence of one such path suffices to put x into the language  $L(\mathcal{M})$ .





Note that  $ab \in L(\mathcal{M})$  because of the existence of the path  $(q_0, q_1, q_3)$  labeled by this word and the fact that  $q_3$  is a final state. On the other hand,  $(q_0, q_2, q_4)$  is another path labeled by x but  $q_4 \notin F$ .

# Example (cont'd)

This ndfa is simple enough to allow an easy identification of all types of words in  $L(\mathcal{M})$ :

- The final state q<sub>1</sub> can be reached by applying an arbitrary number of bs followed by an a.
- The final state  $q_3$  can be reached by a path of the form  $(q_0, \ldots, q_0, q_1, q_3)$ , that is by a word of the form  $b^k ab$  for  $k \in \mathbb{N}$ .
- So The same final state q<sub>3</sub> can be reached via q<sub>2</sub>. Input words that allow this transition have the form b<sup>k</sup>aa for k ∈ N.

Thus, we have

$$L(\mathcal{M}) = \{b\}^* a \cup \{b\}^* ab \cup \{b\}^* aa = \{b\}^* \{a, ab, aa\}.$$

#### Example

Consider an alphabet  $A = \{a_0, \dots, a_{n-1}\}$  and a binary relation  $\rho \subseteq A \times A$ . The language

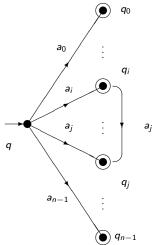
$$\mathcal{L}_{
ho} = \{ \textit{a}_{\textit{i}_0} \cdots \textit{a}_{\textit{i}_{
ho}} ~\mid~ \textit{p} \in \mathbb{N}, (\textit{a}_{i_j},\textit{a}_{i_{j+1}}) \in 
ho ext{ for } 0 \leq j \leq p-1 \}$$

is accepted by the ndfa  $\mathcal{M}_{\rho} = (A, Q, \delta, q, F)$ , where  $Q = \{q, q_0, \dots, q_{n-1}\}, F = \{q_0, \dots, q_{n-1}\}$ , and  $\delta$  is given by •  $\delta(q, a_i) = \{q_i\}$  for  $0 \le i \le n-1$ ; • for every i, j such that  $0 \le i, j \le n-1$ ,

$$\delta(q_i, a_j) = \{q_j \in Q \mid (a_i, a_j) \in \rho\}.$$

# Example (cont'd)

Note that if  $(a_i, a_j) \notin \rho$ , then  $(q_i, a_j)$  is a blocking situation. The existence of these blocking situations is precisely what makes this device a nondeterministic automaton.



We show that  $L_{\rho} = L(\mathcal{M}_{\rho})$ . Let  $x = a_{i_0} \cdots a_{i_p}$  be a word in  $L_{\rho}$  with  $p \ge 0$ . We prove by induction on p = |x| - 1 that  $x \in L(\mathcal{M}_{\rho})$  and that  $\delta^*(q, x) = \{q_{i_p}\}$ . The base case, p = 0, is immediate, since the condition  $(a_{i_j}, a_{i_{j+1}}) \in \rho$  for  $0 \le j \le p - 1$  is vacuous. Suppose that the statement holds for words in  $L_{\rho}$  of length at most p and let  $x = a_{i_0} \cdots a_{i_p}$  be a word in  $L_{\rho}$  of length p + 1. It is clear that the word  $y = a_{i_0} \cdots a_{i_{p-1}}$  belongs to  $L_{\rho}$ . By the inductive hypothesis,  $y \in L(\mathcal{M}_{\rho})$  and  $\delta^*(q, y) = \{q_{i_{p-1}}\}$ . Since  $(a_{i_{p-1}}, a_{i_p}) \in \rho$  (by the definition of  $L_{\rho}$ ), we

have  $\delta(q_{i_{p-1}}, a_{i_p}) = \{q_{i_p}\}$ , so

$$q_{i_p} \in igcup_{q'\in\delta(q,y)} \delta(q', \mathsf{a}_{i_p}) = \delta^*(q, y \mathsf{a}_{i_p}) = \delta^*(q, x).$$

Therefore,  $x \in L(\mathcal{M}_{\rho})$ .

To prove the converse inclusion  $L(\mathcal{M}_{\rho}) \subseteq L_{\rho}$  we use an argument by induction on  $|x| \geq 1$ , where x is a word from  $L(\mathcal{M}_{\rho})$ , to show that if  $x = a_{i_0} \cdots a_{i_p} \in L(\mathcal{M}_{\rho})$ , then  $\delta^*(q, x) = \{q_{i_p}\}$  and  $x \in L_{\rho}$ . Again, the base case is immediate.

Suppose that the statement holds for words in  $L(\mathcal{M}_{\rho})$  of length less than p + 1 that belong to  $L_{\rho}$ , and let  $x = a_{i_0} \cdots a_{i_p}$  be a word in  $L(\mathcal{M}_{\rho})$  of length p + 1. If  $y = a_{i_0} \cdots a_{i_{p-1}}$ , it is easy to see that  $y \in L(\mathcal{M}_{\rho})$  because no blocking situation may arise in  $\mathcal{M}_{\rho}$  while the symbols of y are read. Therefore, by the inductive hypothesis,  $y \in L_{\rho}$  and  $\delta^*(q, y) = \{q_{i_{p-1}}\}$ . Further, since  $\delta(q_{i_{p-1}}, a_{i_p}) \neq \emptyset$ , it follows that  $(a_{i_{p-1}}, a_{i_p}) \in \rho$ , so  $x \in L_{\rho}$ , and  $\delta^*(q, x) = q_{i_p}$ .

Thus,  $L_{\rho}$  is accepted by the ndfa  $\mathcal{M}_{\rho}$ .

Let  $\mathcal{M} = (A, Q, \delta, q_0, F)$  be a nondeterministic automaton, and let  $\Delta : \mathcal{P}(Q) \times A \longrightarrow \mathcal{P}(Q)$  be defined by

$$\Delta(S,a) = \bigcup_{q \in S} \delta(q,a) \tag{1}$$

for every  $S \subseteq Q$  and  $a \in A$ . Starting from  $\Delta$ , we define  $\Delta^* : \mathcal{P}(Q) \times A^* \longrightarrow \mathcal{P}(Q)$  in the manner used for the transition functions of deterministic automata. Namely, we define

$$\Delta^*(S,\lambda) = S \tag{2}$$

$$\Delta^*(S, xa) = \Delta(\Delta^*(S, x), a)$$
(3)

for every  $S \subseteq Q$  and  $a \in A$ .

#### Lemma

The functions  $\Delta$  and  $\Delta^*$  defined above satisfy the following properties: • For every family of sets  $\{S_0, \ldots, S_{n-1}\}$  and every  $a \in A$ , we have:

$$\Delta\left(igcup_{0\leq i\leq n-1}S_i,a
ight)=igcup_{0\leq i\leq n-1}\Delta(S_i,a).$$

**2** For every set  $S \subseteq Q$  and  $x \in A^*$  we have

$$\Delta^*(S,x) = \bigcup_{q \in S} \delta^*(q,x).$$

## Proof

The first part of the lemma is immediate, because

$$\begin{array}{ll} \Delta(\bigcup_{0\leq i\leq n-1}S_i,a) &= \bigcup\{\delta(q,a) \mid q \in \bigcup_{0\leq i\leq n-1}S_i\} \\ &= \bigcup_{0\leq i\leq n-1}\{\delta(q,a) \mid q \in S_i\} \\ &= \bigcup_{0\leq i\leq n-1}\Delta(S_i,a). \end{array}$$

The argument for the second part of the lemma is by induction on |x|. For the basis step, we have |x| = 0, so  $x = \lambda$ , and  $\Delta^*(S, \lambda) = S$ ,  $\bigcup_{q \in S} \delta^*(q, \lambda) = \bigcup_{q \in S} \{q\} = S$ . Suppose that the argument holds for words of length *n*, and let x = za be a word of length n + 1. We have

$$\begin{aligned} \Delta^*(S, x) &= \Delta^*(S, za) \\ &= \Delta(\Delta^*(S, z), a) \\ &= \Delta(\bigcup_{q \in S} \delta^*(q, z), a) \text{(by ind. hyp.)} \\ &= \bigcup_{q \in S} \Delta(\delta^*(q, z), a) \\ &= \bigcup_{q \in S} \bigcup_{r \in \delta^*(q, z)} \delta(r, a) = \bigcup_{q \in S} \delta^*(q, za) = \bigcup_{q \in S} \delta^*(q, x). \end{aligned}$$

Nondeterministic automata can be regarded as generalizations of deterministic automata in the following sense. If  $\mathcal{M} = (A, Q, \delta, q_0, F)$  is a deterministic automaton, consider a nondeterministic automaton  $\mathcal{M}' = (A, Q, \delta', q_0, F)$ , where  $\delta'(q, a) = \{\delta(q, a)\}$ . It is easy to verify that for every  $q \in Q$  and  $x \in A^*$  we have  $\delta'^*(q, x) = \{\delta^*(q, x)\}$ . Therefore,

$$\begin{split} \mathcal{L}(\mathcal{M}') &= \{ x \in A^* \mid \delta'^*(q_0, x) \cap F \neq \emptyset \} \\ &= \{ x \in A^* \mid \{\delta^*(q_0, x)\} \cap F \neq \emptyset \} \\ &= \{ x \in A^* \mid \delta^*(q_0, x) \in F \} \\ &= \mathcal{L}(\mathcal{M}). \end{split}$$

In other words, for every deterministic finite automaton there exists a nondeterministic one that recognizes the same language.

#### Theorem

For every nondeterministic automaton, there exists a deterministic automaton that accepts the same language.

## Proof

Let  $\mathcal{M} = (A, Q, \delta, q_0, F)$  be a nondeterministic automaton. Define the function  $\Delta$  as in the equality

$$\Delta(S,a) = \bigcup_{q \in S} \delta(q,a),$$

and consider the deterministic automaton  $\mathfrak{M}' = (A, \mathfrak{P}(Q), \Delta, \{q_0\}, \{S \mid S \subseteq Q \text{ and } S \cap F \neq \emptyset\})$ . For every  $x \in A^*$  we have the following equivalent statements:

• 
$$x \in L(\mathcal{M});$$

- $\delta^*(q_0, x) \cap F \neq \emptyset;$
- $\ \, {\bf O} \ \, \Delta^*(\{q_0\},x)\cap F\neq \emptyset;$
- $x \in L(\mathcal{M}')$ .

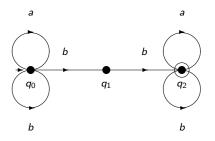
This proves that  $L(\mathcal{M}) = L(\mathcal{M}')$ .

#### Example

Consider the nondeterministic finite automaton

$$\mathfrak{M} = (\{a, b\}, \{q_0, q_1, q_2\}, \delta, q_0, \{q_2\})$$

whose graph is given below.



It is easy to see that the language accepted by this automaton is  $A^*bbA^*$ , that is the language that consists of all words that contain two consecutive b symbols.

The graph of the nondeterministic automaton is simpler than the graph of the previous deterministic automaton; this simplification is made possible by the nondeterminism.

# Graph of the Equivalent ndfa

