Finite Automata and Regular Languages (part III)

Prof. Dan A. Simovici

UMB

Nondeterministic finite automata can be further generalized by allowing transitions between states without reading any input symbol.

Definition

A transition system (ts) is a 5-tuple $\mathcal{T} = (A, Q, \theta, Q_0, F)$, where A, Q, and F are as in a finite automaton, θ is a finite relation, $\theta \subseteq Q \times A^* \times Q$, called the transition relation of \mathcal{T} , and Q_0 is a nonempty subset of Q called the set of initial states, and F is the set of final states. A transition in \mathcal{T} is a triple $(q, x, q') \in \theta$. We refer to transitions of the form (q, λ, q') as null transitions. Transition systems are conveniently represented by labeled directed multigraphs. Namely, if $\mathcal{T} = (A, Q, \theta, Q_0, F)$ is a transition system, then its graph is a labeled directed multigraph $G(\mathcal{T})$.

• $G(\mathcal{T})$ has Q as its set of vertices;

• each directed edge e from q to q' labelled x corresponds to a triple $(q, x, q') \in \theta$, and every such triple is represented by an edge in G.

Unlike the graph of a dfa or an ndfa, the edges of the directed graph of a transition system can be labelled by words, including the null word.

Example

The graph of the transition system

$$\mathbb{T}_1 = (\{a, b, c\}, \{q_0, q_1, q_2, q_3\}, \theta, \{q_0\}, \{q_3\}),$$

where θ is given by $\theta = \{(q_0, ab, q_1), (q_0, \lambda, q_2), (q_1, bc, q_2), (q_1, \lambda, q_3), (q_2, c, q_3)\}$ is shown below:

Extending the transition relation

As we did with the transition functions of dfas and ndfas, we wish to extend the transition relation θ of a transition system \mathfrak{T} to the set $Q \times A^* \times Q$. The extension $\theta^* \subseteq Q \times A^* \times Q$ is given next.

• For every
$$oldsymbol{q}\in Q$$
 define $(oldsymbol{q},\lambda,oldsymbol{q})\in heta^*.$

- **2** Every triple $(q, x, q') \in \theta$ belongs to θ^* .
- Solit $(q, x, q'), (q', y, q'') \in \theta^*$, then $(q, xy, q'') \in \theta^*$.

Note that $(q, w, q') \in \theta^*$ if and only if there is a path in $G(\mathcal{T})$ that begins with q and ends with q' such that the concatenated labels of the directed edges of this path form the word w.

Example

If \mathcal{T} is the above transition system, then $(q_0, abbcc, q_3) \in \theta^*$ because $(q_0, ab, q_1), (q_1, bc, q_2), (q_2, c, q_3) \in \theta$. Similarly, $(q_0, c, q_3) \in \theta^*$ because $(q_0, \lambda, q_2), (q_2, c, q_3) \in \theta$.

Definition

Let $\mathfrak{T} = (A, Q, \theta, Q_0, F)$ be a transition system. The language accepted by \mathfrak{T} is

$$L(\mathfrak{T}) = \{ x \in A^* \mid (q_0, x, q) \in \theta^* \text{ for some } q_0 \in Q_0, q \in F \}.$$

Thus, a word x belongs to $L(\mathcal{T})$ if there is a path in $G(\mathcal{T})$ that begins in an initial state $q_0 \in Q_0$, labeled by x, such that the path ends in one of the states of F, the set of final states.

Transition systems generalize ndfas

If $\mathcal{M} = (A, Q, \delta, q_0, F)$ is a nondeterministic automaton, define the transition system $\mathcal{T}_{\mathcal{M}} = (A, Q, \theta, \{q_0\}, F)$, where

$$heta = \{(q, a, q') ~|~ q, q' \in Q, a \in A ext{ and } q' \in \delta(q, a)\}.$$

It can be shown by induction on |x| that $(q, x, q') \in \theta^*$ if and only if $q' \in \delta^*(q, x)$. This implies that $L(\mathcal{T}_{\mathcal{M}}) = L(\mathcal{M})$. Therefore, every regular language can be accepted by a transition system. Furthermore, any language that can be accepted by a transition system is regular.

Lemma

For every transition system $\mathfrak{T} = (A, Q, \theta, Q_0, F)$ there exists a transition system $\mathfrak{T}' = (A, Q', \theta', Q_0, F)$ such that $(q, x, q_1) \in \theta'$ implies $|x| \leq 1$ and $L(\mathfrak{T}') = L(\mathfrak{T})$.

Proof

Define the relation θ' and the set Q' as follows:

- Every state $q \in Q$ also belongs to Q'.
- Solution Every triple $(q, x, q') \in \theta$ such that $|x| \leq 1$ also belongs to θ' .
- If $t = (q, x, q') \in \theta$ such that $x = a_0 \dots a_{n-1}$ and $n \ge 2$, add n-1 new states q_0^t, \dots, q_{n-2}^t to Q' and the triples

$$(q, a_0, q_0^t), (q_0^t, a_1, q_1^t), \dots, (q_{n-2}^t, a_{n-1}, q')$$

to θ' .

The ts \mathfrak{T}' clearly satisfies the conditions of the lemma, since $(q, x, q') \in \theta^*$ if and only if $(q, x, q') \in \theta'^*$.

Theorem

For every transition system $\mathfrak{T} = (A, Q, \theta, Q_0, F)$ there exists a deterministic finite automaton \mathfrak{M} such that $L(\mathfrak{T}) = L(\mathfrak{M})$.

Proof.

By the previous Lemma we can assume that $(q, x, q') \in \theta$ implies $|x| \leq 1$. Define the deterministic finite automaton $\mathcal{M} = (A, \mathcal{P}(Q), \Delta, Q'_0, F')$, where the initial state of \mathcal{M} is

$$Q_0' = \{ q \in Q \mid (q_0, \lambda, q) \in heta^* ext{ for some } q_0 \in Q_0 \},$$

the set of final states is $F' = \{S \mid S \subseteq Q, S \cap F \neq \emptyset\}$, and the function Δ is defined by

$$\Delta(S,a) = \{q' \in Q \mid (q,a,q') \in \theta^* \text{ for some } q \in S\},$$

for every $S \subseteq Q$ and $a \in A$.

Proof (cont'd)

It is not difficult to verify, by induction on |x|, that

$$\Delta^*(\mathit{Q}_0',x)=\{q'\in Q \ \mid \ (q_0,x,q')\in heta^* ext{ for some } q_0\in \mathit{Q}_0\},$$

for $x \in A^*$. For the basis case, |x| = 0, so the above equality becomes

$$Q_0' = \{ q' \in Q \mid (q_0,\lambda,q') \in heta^* ext{ for some } q_0 \in Q_0 \},$$

which holds by the definition of Q'_0 .

Proof (cont'd)

Suppose that the equality holds for words of length n, and let y be a word of length n + 1. We can write y = xa, so

$$\begin{split} \Delta^*(Q'_0, y) &= \Delta^*(Q'_0, xa) \\ &= \Delta(\Delta^*(Q'_0, x), a) \\ &= \Delta(\{q' \in Q \mid (q_0, x, q') \in \theta^* \text{ for some } q_0 \in Q_0\}, a) \\ &\quad (by \text{ the inductive hypothesis}) \\ &= \{r \in Q \mid (q', a, r) \in \theta^*, \text{ for some } q' \text{ such that} \\ &\quad (q_0, x, q') \in \theta^* \text{ for some } q_0 \in Q_0\} \\ &\quad (by \text{ the definition of } \Delta) \\ &= \{r \in Q \mid (q_0, xa, r) \in \theta^* \text{ for some } q_0 \in Q_0\} \\ &\quad (by \text{ the definition of } \theta^*) \\ &= \{r \in Q \mid (q_0, y, r) \in \theta^* \text{ for some } q_0 \in Q_0\}, \end{split}$$

which concludes our inductive argument.

Proof (cont'd)

From this it follows that $L(\mathcal{M}) = L(\mathcal{T})$. By definition, $x \in L(\mathcal{M})$ if and only if $\Delta^*(Q'_0, x) \in F'$. This is equivalent to $\Delta^*(Q'_0, x) \cap F \neq \emptyset$. This is equivalent to the existence of a state $q' \in F'$ such that $(q_0, x, q') \in \theta^*$ for some $q_0 \in Q_0$, and this is equivalent to $x \in L(\mathcal{T})$.

Corollary

The class of languages that are accepted by transition systems is the class $\ensuremath{\mathfrak{R}}$ of regular languages.

Definition

Let $\mathfrak{T} = (A, Q, \theta, Q_0, F)$ be a transition system. The λ -closure is the mapping $K_{\mathfrak{T}} : \mathfrak{P}(Q) \longrightarrow \mathfrak{P}(Q)$ given by

$$\mathcal{K}_{\mathbb{T}}(S) = \{ q \in Q \ | \ (s,\lambda,q) \in heta^* ext{ for some } s \in S \}.$$

The set $K_{\mathcal{T}}(S)$ comprises the states in S plus all the states that can be reached from a state in S using a series of λ -transitions.

Theorem

Let $\mathfrak{T} = (A, Q, \theta, Q_0, F)$ be a transition system. The λ -closure of \mathfrak{T} has the following properties.

S ⊆ K_T(S);
S ⊆ S' implies K_T(S) ⊆ K_T(S');
K_T(K_T(S)) = K_T(S),
for every S, S' ∈ P(Q).

Proof

Since $(s, \lambda, s) \in \theta^*$ it is immediate that $S \subseteq K_{\mathfrak{T}}(S)$ for every $S \in \mathfrak{P}(Q)$. The second part of the theorem is a direct consequence of the definition of $K_{\mathfrak{T}}$.

Note that Parts (i) and (ii) imply $K_{\mathbb{T}}(S) \subseteq K_{\mathbb{T}}(K_{\mathbb{T}}(S))$. Let $q \in K_{\mathbb{T}}(K_{\mathbb{T}}(S))$. There is a state $s \in S$ and a state $r \in K_{\mathbb{T}}(S)$ such that $(s, \lambda, r) \in \theta^*$ and $(r, \lambda, q) \in \theta^*$. By the definition of θ^* we obtain $(s, \lambda, q) \in \theta^*$, so $q \in K_{\mathbb{T}}(S)$. This implies $K_{\mathbb{T}}(K_{\mathbb{T}}(S)) \subseteq K_{\mathbb{T}}(S)$, which gives the last part of the theorem.

Definition

Let $\mathfrak{T} = (A, Q, \theta, Q_0, F)$ be a transition system. A $K_{\mathfrak{T}}$ -closed subset of Q is a set S such that $S \subseteq Q$ and $K_{\mathfrak{T}}(S) = S$.

Example

Consider the transition system

$$\mathbb{T} = (\{a, b\}, \{q_0, q_1, q_2, q_3\}, \theta, \{q_0\}, \{q_2, q_3\})$$

whose graph is shown

S	$K_{T}(S)$	5	$K_{\mathrm{T}}(S)$
Ø	Ø	$\{q_1, q_2\}$	$\{q_1, q_2, q_3\}$
$\{q_0\}$	Q	$\{q_1, q_3\}$	$\{q_1, q_2, q_3\}$
$\{q_1\}$	$\{q_1, q_2, q_3\}$	$\{q_2, q_3\}$	$\{q_1, q_2, q_3\}$
$\{q_2\}$	$\{q_1, q_2, q_3\}$	$\{q_0, q_1, q_2\}$	Q
$\{q_3\}$	$\{q_3\}$	$\{q_0, q_1, q_3\}$	Q
$\{q_0, q_1\}$	Q	$\{q_0, q_2, q_3\}$	Q
$\{q_0, q_2\}$	Q	$\{q_1, q_2, q_3\}$	$\{q_1, q_2, q_3\}$
$\{q_0, q_3\}$	Q	$\{q_0, q_1, q_2, q_3\}$	Q

The closed subsets of Q are \emptyset , $\{q_3\}$, $\{q_1, q_2, q_3\}$, and Q itself.

Theorem

Let $\mathfrak{T} = (A, Q, \theta, Q_0, F)$ be a transition system and let $\mathfrak{M} = (A, \mathfrak{P}(Q), \Delta, Q'_0, F')$ be the dfa constructed in earlier. The set $\Delta(S, a)$ is a $K_{\mathfrak{T}}$ -closed set of states for every subset S of Q and $a \in A$.

Proof

To prove the theorem it suffices to show that $K_{\mathbb{T}}(\Delta(S,a)) \subseteq \Delta(S,a)$. Let $p \in K_{\mathbb{T}}(\Delta(S,a))$. There is $p_1 \in \Delta(S,a)$ such that $(p_1, \lambda, p) \in \theta^*$. The definition of $\Delta(S,a)$ implies the existence of $q \in S$ such that $(q, a, p_1) \in \theta^*$. Thus, $(q, a, p) \in \theta^*$, so $p \in \Delta(q, a)$.

Corollary

Let $\mathfrak{T} = (A, Q, \theta, Q_0, F)$ be a transition system, and let $\mathfrak{M} = (A, \mathfrak{P}(Q), \Delta, Q'_0, F')$ be the constructed dfa. The accessible states of the dfa \mathfrak{M} are $K_{\mathfrak{T}}$ -closed subsets of Q.

Proof.

The initial state Q'_0 of \mathcal{M} is obviously closed. If Q' is an accessible state of \mathcal{M} , then $Q' = \Delta(S, a)$ for some $S \subseteq Q$. Therefore Q' is closed. \Box

Theorem

Let $\mathfrak{T} = (A, Q, \theta, Q_0, F)$ be a transition system, and let $\mathfrak{M} = (A, \mathfrak{P}(Q), \Delta, Q'_0, F')$ be the dfa constructed earlier. Then, $\Delta(S, a) = K_{\mathfrak{T}}(\{q \in Q \mid (s, a, q) \in \theta \text{ for some } s \in S\})$, where S is an accessible state of \mathfrak{M} .

Proof

Let $s \in S$. Note that if $(s, a, q) \in \theta$ and $(q, \lambda, q_1) \in \theta^*$, then by the definition of θ^* we have $(s, a, q_1) \in \theta^*$. Therefore, $K_{\mathbb{T}}(\{q \in Q \mid (s, a, q) \in \theta\} \subseteq \Delta(S, a)$. To prove the converse inclusion, $\Delta(S, a) \subseteq K_{\mathbb{T}}(\{q \in Q \mid (s, a, q) \in \theta\})$, let $(s, a, q_1) \in \theta^*$. Then, there is a path in $G(\mathbb{T})$ that begins with s and ends with q_1 such that the concatenated labels of the directed edges of this path form the word a. This implies the existence of the states $p, p' \in Q$ such that $(s, \lambda, p) \in \theta^*$, $(p, a, p_1) \in \theta$, and $(p_1, \lambda, q_1) \in \theta^*$. Since S is $K_{\mathbb{T}}$ -closed it follows that $p \in S$ and this gives the desired conclusion.

An Algorithm for Constructing a dfa corresponding to a ts

Input: A transition system $\mathfrak{T} = (A, Q, \theta, Q_0, F)$. **Output:** An accessible dfa \mathfrak{M}_1 such that $L(\mathfrak{M}_1) = L(\mathfrak{T})$. **Method:** Compute the increasing sequence of collections of subsets of Q, $\mathfrak{Q}_0, \ldots, \mathfrak{Q}_i, \ldots$, where

 $\begin{array}{rcl} \mathbb{Q}_0 & = & \{Q'_0\} \\ \mathbb{Q}_{i+1} & = & \mathbb{Q}_i \cup \{U \in \mathcal{P}(Q) \mid U = \Delta(S, a) \text{ for some } S \in \mathbb{Q}_i \text{ and } a \in A\}. \end{array}$

the computation of $U = \Delta(S, a)$ can be done by computing first the set $W = \{q \in Q \mid (s, a, q) \in \theta \text{ for some } s \in S\}$ and then $U = K_{\mathcal{T}}(W)$. Stop when $\Omega_{i+1} = \Omega_i$. The set Ω_i is the set of accessible states of \mathcal{M} . Output $\mathcal{M}' = \mathsf{ACC}(\mathcal{M})$, the accessible component of \mathcal{M} .

For the transition system

the transition system is:

