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ABSTRACT. W introduce an extension of the notion of Shannon conditional entropy to a more
general form of conditional entropy that captures both the conditional Shannon entropy and a
similar notion related to the Gini index. The proposed family of conditional entropies generates
a collection of metrics over the set of partitions of finite sets, which can be used to construct
decision trees. Experimental results suggest that by varying the parameter that defines the
entropy it is possible to obtain smaller decision trees for certain databases without sacrificing
accurracy.

RESUME. Nous présentons une extension de la notion de I’ entropie conditionnelle de Shannon
a une forme plus générale d' entropie conditionnelle qui formalise I’ entropie conditionnelle de
Shannon et une notion semblableliéeal’index de Gini. La famille proposée des entropies condi-
tionnelles produit d’une collection de métriques sur |’ensemble de partitions des ensembles
finis, qui peuvent étre employées pour construire des arbres de décision. Les résultats expéri-
mentaux suggerent qu’en changeant le paramétre qui définit I’ entropieil soit possible d’ obtenir
de plus petits arbres de décision pour certaines bases de données sans sacrifier |’ exactitude de
la classification.
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cision tree
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1. Introduction
Traditionally, the notion of Shannon entropy is introduced for a random variable
distribution
X (351 xn)
P1r - Dn

asH(X) = — > i, pilog, p;. A partitionT = {Bx,. .., B, } on afinite, nonempty
setA generates naturally a random variable

We define the Shannon entropymofs the Shannon entropy 4f ..

In [SIM 02] we introduced an axiomatization of a general notion of entropy for
partitions of finite sets. Our system of axioms shows the common nature of Shannon
entropy and of other measures of distribution concentration such that the Gini index.
The goal of this paper is to introduce a metricRART(A) starting from generalized
conditional entropy of partitions. We show that these metrics generate selection cri-
teria for splitting attributes in the construction of decision trees that result in smaller
trees without any appreciable loss in accuracy.

Let PART(A) be the set of partitions of the nonempty skt The class of all
partitions of finite sets is denoted BPART. The one-block partition ofl is denoted
by w4, while the partition{{a} | a € A} is denoted by 4. If 7,7’ € PART(A),
thent < 7’ if every block of 7 is included in a block ofr’. Clearly, for every
m € PART(A) we havery < 7 < wy. The partial ordered séPART(A), <) is
a lattice (see, for example a very lucid study of this lattice in [LER 81]), i’ €
PART(A), theno’ coverso if o < ¢’ and there is no partitios; € PART(A) such
thato < o1 < ¢’. This is denoted by < o'. It is easy to see that < ¢’ if and
only if o/ can be obtained from by fusing two of its blocks into a block af’. The
infimum of two partitionsr, o € PART(A) will be denoted byr A o.

Partitions play a central role in classifications. Indeed, if a set of tuplesde-
scribed by attributes, .. ., a,, then each set of attribut€ defines a partitionr (K)
of T', where two tuples belong to the same blockr¢f) if they have equal projec-
tions on K. Note thatH C K, thenn(K) < = (H) for any attribute set$/ and
K.

If A, B are two disjoint and nonempty setsc PART(A), o € PART(B), where
7= {A1,...,An}, 0 = {B1,..., By}, then the partitionr + o is the partition of
AUBgivenbyr+o0 = {A1,..., An, B1,...,B,}. Whenever the” operation is
defined, then it is easily seen to be associative. In other words Bf, C' are pairwise
disjoint and nonempty sets, ande PART(A), 0 € PART(B), 7 € PART(C), then
7+ (0 +7) = (7 + o) + 7. Observe that if4, B are disjoint, then4 + 5 = taus.
Also,w4 + wp is the partition{ A, B} of the setd U B.



Letm = {A1,..., A} € PART(A) ando = {Bs1,...,B,} € PART(B). The
partition{A; x B; | 1 <i <m,1 <j <n}of Ax Bisdenoted byr x o. Note
thatLA X LB = lLAxB ande X WB = WAxB-

The axiomatization introduced in [SIM 02] consists of four axioms satisfied by
several types of entropy-like characteristics of partitions.

Definition 1.1 Letg € R, 5 > 0, and letd : RQZO — R>( be a continuous function
such tha®(x,y) = ®(y, z), ®(z,0) = x forz,y € Rx>o.

A (D, §)-systemof axiomsfor a partition entropy J : PART(A) — R>( consists
of the following axioms:
(P1) If m, 7" € PART(A) are such that < 7/, then3{(7") < H(~).
(P2) If A, B are two finite sets such thad| < |B|, thenH(c 4) < H(tp).

(P3) For every disjoint setsl, B and partitionst € PART(A), ando € PART(DB)
we have:

B B
H(r +0) = (ﬁ) H(r) + (%) H(o) + H({A, BY).

(P4) If m € PART(A) ando € PART(B), thenH(w x o) = ®(H (), H(o)).

Observe that we postulate thE{7) > 0 for any partitions since the range of every
functiond{ is R>g.

For a choice ofs these axioms determine an entropy functién up to a con-
stant factor. The same choice also determines the fundiiomhe entropies de-
fined for 3 # 1 were namechon-Shannon entropies. In this case, for a partition

B
m={A1,...,A,} € PART(A4) we haveHz(m) = k <1 - (‘aj") > where

7j=1
k is a constant that satisfies the inequatifp — 1) > 0. Thus, for3 > 1 we have

s (z (%)ﬁ) |

J=1

and forg < 1 we have

51451
Ha(m)=c | D () -1,
4]
for some positive constamt wherec = k if 8 > 1, andc = —k wheng < 1. In

either case, we hav®(xz,y) = = + y — zay for z,y € Rxo.



The cases = 1 yields the Shannon entropy, that is

|4 |4;]
Hi(r)=—cy ——log,——.
2T e I3

Also, if 8 =1, then®(z,y) =z +yforz,y € R>o.

2. Metricson PartitionsInduced by Generalized Entropies

The generalized entropies previously introduced generate corresponding general-
ized conditional entropies. Let € PART(A) and letC C A. Denote byr¢ the
“trace” of m on C given byrc = {B N C|B € wsuchthatB N C # (}. Clearly,
mc € PART(C); also, if C'is a block ofr, thenro = we.

Definition 2.1 The conditional entropy defined by th€®, 5)-entropyX is the func-

tion Hz : PART?> — R given by: Hs(n|o) = Z;.Lzl “CAJ"‘ - Hp(me,), where

m,0 € PART(A) ando = {C4,...,Cy}. 0

Observe that{g(m|wa) = Ha(m).

A direct consequence of the Axioms is ti¥éfw 4) = 0 for any setd (Lemmalll.2
from [SIM 02]). The following reciprocal result also holds:

Lemma2.2 Let A beafiniteset and let 7 € PART(A) such that () = 0. Then,
T = WwA.

Proof. Suppose thal{s(m) = 0 butm < w4. Then, there exists a bloak of
msuchthath ¢ C c A. If § = {C,A — C}, then clearly we have < 6, so
0 < Hp(0) < Hg(m), which impliesHz(0) = 0. If 3 > 1, then

|c|)ﬁ (|A - 0|)5

He(0)=c|1- (=) — = 0.

#®) ( (2 A

The concavity of the functiorfi(z) = z? + (1 — z)? on |0, 1] (wheng > 1) implies

eitherC' = A or C = (3, which is a contradiction. Thus, = w 4. A similar argument
works for the other cases. |

Theorem 2.3 Let A beafiniteset and let 7,0 € PART(A). We have H g(m|o) = 0
ifandonlyif o < .

Proof. Suppose that = {C1,...,C,}. If o < m, thenre, = we, forl < j <mn,
soHg(w|o) = 0. Conversely, suppose that

n C
9{3(7T|0) = Z % -J‘Cﬁ(ﬂcj) =0.
j=1



This impliesHs(rc,) = 0for1 < j < n, song, = we, forl < j < n by
Lemma 2.2. This means that every blaCk of ¢ is included in a block ofr, which
implieso < 7. |

Note that the partitiom A o whose blocks consist of nonempty intersectioresd
o can be writenas Ao = ¢, + - +7¢, = 0B, +---+ op,, . Therefore, by

m "

N\B
Corollary I1.7 of [SIM 02], we haved( 5(rAc) = 37, ('chfl') Hp(mo,)+Hs (o).

For those entropies with > 1 we have
Ha(m A o) < Ha(nlo) + Hs (o), (1)

while for those havings < 1, the reverse inequality holds. In the case of Shannon
entropy,3 = 1 and

Hi(mno) = Hi(wlo)+ Hi(o) 2

Lemma24 Leta,b € [0,1] suchthat a + b = 1. Then, for 5 > 1 we have:

n

Z(axi +by;)P < aix? +bzn:yfv

i=1 i=1 i=1

for every x1,...,2n,y1,...,yn € [0,1]. For 8 < 1, thereverse inequality holds.

Proof. The statement follows immediately from concavity of the functfdm) =
z” for 8 > 1 on the intervalo, 1].

Theorems 2.5 and 2.8 extend well-known monotonicity properties of Shannon en-
tropy.

Theorem 25 If 7, 0,0’ are partitions of the finite set A such that ¢ < o/, then
Ha(m|o) < Hga(w|o’) for B > 0.

Proof. To prove this statement it suffices to consider only the case whenr’.
Suppose initially thatt > 1.

Leto, 0’ € PART(A) such thatr < ¢’. Suppose thab, E are blocks ot such
thatC = D U E, whereC'is a block ofg’; the partitionr is {B1, ..., By }.

Definez; = 'B‘ O‘D‘ andy; ‘B mE' for 1 < i < n. If we chooser = llgll and
b= LZ then
cT

— [B.nCJ? |B:nD|? |B:inE®
<
ICI;1 cP IDIZ Bk IEIZ B[P



by Lemma 2.4. Consequently, we can write:

Holrlo) = -+ T Hs(mp) + T Hame) + -
L 1Dl |B;n D} |B.NEJ
i ( Z D ) ( Z 2P )
Lol 1B, N C|? B ,
< |A| (1—2 Tl ) - =Hg(mwlo").

For 3 < 1 we have

— [B.nCJ? ~ |BinDJ? ~|BinE)

by the second part of Lemma 2.4. Thus,

E

o(rlo) =+ + L2190s(ap) +

A

D] |Bin D|° E] (N~ 1Bin EI°
= 1)+ —1) 4
Al 2 DI Al 2 2

=1

el |B;nC)® .

For 8 = 1 the inequality is a well-known property of Shannon entropy. |

19 (me) 4

Corollary 2.6 For every 7,0 € PART(A) and 3 > 0, we have H g(rr|o) < Hg(m).

Proof. Sinces < w4, by Theorem 2.5 we havk g(7|o) < Hg(m|lwa) = Ha(n).

Corollary 2.7 Let A beafiniteset. For 5 > 1wehave Hg(mAo) < Hg(m)+Hp(o)
for every m,0 € PART(A).

Proof. By Inequality (1) and by Corollary 2.6 we have

Hp(m ANo) < Hg(rlo) + Hp(o) < Hg(m) + Hg(o).

Theorem 2.8 If 7, 7', o are partitions of the finite set A such that # < =/, then
Hs(rlo) > Ha(r'|o).



Proof. Suppose that = {C1,...,Cy,}. Then, itis clear that¢, < ”’cj forl <
J < n. ThereforeHs(rc,) > J{g(w’cj) by Axiom (P1), which implies immediately

the desired inequality. |

Lemma?2.9 Let A beanonempty set and let {A’, A"} be atwo-block partition of A.
If 7 € PART(A), o’ € PART(A’),and 0" € PART(A”), then

Al non o A
Ha(rlo" +0") = T Hp(w'|o") +
|A] A

g_cﬁ (’/T”|O'”),
wheren’ = 74 and 7"’ = man.

Proof. Note thats’ 4 ¢” is a partition ofA. The lemma follows immediately from
the definition of conditional entropy. |

Theorem 2.10 Let A be a nonempty set and let { A4, ..., A;} be apartition of A. If
m € PART(A), o, € PART(Ag) for 1 < k < ¢, then

£
A
Holrlor + -+ +.00) = 3 3tomlo)
k=1

wherem, =4, for 1 <k < /.

Proof. The result follows immediately from Lemma 2.9 due to the associativity of
the partial operation". |

Theorem 2.11 If 3 > 1, then for every three partitions 7, o, 7 of a finite set A we
have

Ha(m|lo A1)+ Hg(o|T) > Ha(r Aa|T).
If 3 < 1 we havethe reverse inequality, and for 5 = 1 we have the equality

Ha(mlo A1)+ Ha(o|T) = Ha(m A ol7).

Proof. Supposethat = {B1,..., By}, 0 ={C1,...,Cyp},andr = {Dq,..., D,}.
We noted already that A7 = op, +---+0p, = 7¢, + - - + 7¢,,- Consequently,
by Theorem 2.10 we havE (o A ) = Zf;zl %%g(wm lop, ). Also, we have

Hp(olr) = Loy P (0n,).



If 3> 1we saw thatls(mp, Aop,) < Hs(rp,|op, ) +Hs(op, ), for everyk,
1 < k < ¢, which implies

Dy |

Hp(o A7)+ Hg(o|r) > Z||A|

9{3 TD, N UDk)

Dy,
- Z ||A||9{ﬁ (mAo)py)

= Hg(m Aal|r).

Using a similar argument we obtain the seg:ond inequality of the theorem. The equality
for the Shannon case was obtained in [MAN 91]. |

Corollary 2.12 Let A beafiniteset. For § > 1 and for 7w, 0,7 € PART(A) we have
theinequality: Hg(w|o) + Ha(o|r) > Ha(w|7).

Proof. Note that by Theorem 2.5 we havé( s(n|o) + Hg(o|r) > Ha(r|o A
7)+Hg(o|7). Therefore, fo3 > 1, by Theorems 2.11 and 2.8 we obté&iis (|o) +
Hp(olr) = Hp(m Aolr) = Hp(w|r).

Definition 2.13 Let 3 > 1. The mappingls : PART(A)? — R is defined by
dg(m,0) = Ha(w|o) + Ha(o|r) for m,0 € PART(A). 0

The following result generalizes a result of Lopez de Méntaras:
Corollary 2.14 dg isametric on PART(A).

Proof. If dg(m,0) = 0, thenHg(n|o) = Hg(o|m) = 0. Therefore, by Theo-
rem 2.3 we have < w andr < ¢, sor = o. The symmetry ofl g is inmediate. The
triangular property is a direct consequence of Corollary 2.12. |

In [MAN 91] it is shown that the mapping; : PART(A)?> — R, that corre-
sponds to Shannon entropy, defined by

dl(ﬂao—)
Hi(m A o)

for m,0 € PART(A) is also a metric ofPART (A4). This result is extended next.

ei(m o) =

Theorem 2.15 Let A be a finite, non-empty set. For 8 > 1, the mapping eg :
PART(A)? — R>( defined by

e5(r,0) = 2dg(m,0)
T g, o) + Ha(m) + Hp(o)

for m,0 € PART(A) isametricon PART(A) suchthat 0 < eg(m, o) < 1.




Proof. It easy to see thal < eg(w, o) < 1 since, by Corollary 2.6} (m) +
Ha(o) > Hp(w|o) + Hg(o|n) = dg(m, o). We need to show only that the triangular
inequality is satisfied by for § > 1. We can write:

eg(m, o) +eglo, 1) =
Hp(m|o)+Hg(a|m) + Hp(o|T)+Hg(T|o)
Hp(mlo)+Hg(o|m)+3Hg(m)+H g (o) Hp(o|r)+Hg(rlo)+Hg(o)+Ha(T)"

Note that

Hp(rmlo) + Hg(o|m) + Hp(m) + Hp(o) <
Hg(mlo) + Hg(o|m) + Hg(o|T) + Ha(r]o) + Hg(m) + Hpa(T)

becausé&{s(o) < Ha(o|r) + Hg(7) by Inequality (1) and AxionfP1). Similarly,

Hg(o|T) + Hga(r]o) + Hp(o) + Hp(r) <
Hp(mlo) + Hg(o|m) + Hpa(o|T) + Ha(Tlo) + Hp(m) + Ha(7)

becausé&{(o) < Hg(o|r) + Hg(w). This yields the inequality:

eg(m, o) +eg(o,7) >
Hp(m|o)+I s (o|m)+Hp (o] T)+Hp(T|o) -
f}fﬁ(W\U)Jrf}fﬁ(U\W)Tﬂ'{ﬁ(ﬂlTHﬂ'{ﬁ(T\0)+f}fﬁ(ﬂ)+f}fﬁ(7) -

1+ Hg(m)+3Hg(7) > )
9f5(”\01)+9f5(0\7f)+}f@(0\7)+H@(T\0)

LTGRO = eg(m, 7).
T (A 905 (717

For3 = 1, ei1(m, 0) = ;&EZA"CZ) due to equality (2), which coincides with the
expression obtained in [MAN 91] for the normalized distance.

3. Generalized Gain asa Selection Criterion for Splitting Attributesin Decision
Trees

The standard selection criterion for splitting attributes is the information gain used
by Quinlan [QUI 93] in the classical C4.5 algorithm. We show that choosing the
splitting attributeA based on the least value @ (w(A), 7), wherer is the partition
of the training set that corresponds to the target attribute of the classification generates
smaller trees with comparable degrees of accuracy.

Letm, o € PART(A). TheS-gain of o relative tor is the expressioty g(r, o) =

Hg(m) — Hg(rw|o). The gain ratio is given by z(m,0) = Ggﬁg?;;). Forj3 = 1 we
obtain Quinlan’s gain defined through Shannon’s entropy.

The next theorem establishes a monotonicity property of the distantteat shows
that dsg does not favor attributes with large domains, an issue that is important for
building decision trees.



Theorem 3.1 Let A be afinite set and let 7, 7’,0 € PART(A) be such that 7' is
covered by . In other words, 7 = {B1,...,B} and 7’ = {By,.. !B},
where B,, = Bj, U B]. Suppose also that there exists a block C of o such that
B,, CC.Then,if 3 > 1,wehavedg(m,o) < dg(n’,0) andeg(m, o) < eg(n’, o).

Proof. For the case of Shannon’s entrogly,= 1, the inequalities were proven
in [MAN 91]. Therefore, we can assume that> 1.

We claim that under the hypothesis of the theorem we Béyéo|m) = H(o|n').
Note thatrp,, = wg,,, o, = wp, , andop, = wps, sinceB,,, B), € B,, C C.
Therefore}(o,,) = H(op:, ) = 9{(03&) =0, hence

m

Ha(o|r) = Z

m—1

B;
Z ||A||:H/3(O—Bi) = Hg(olr").
i=1

Theorem 2.8 implie§{z(w|o) < Ha(n'|o), which gives the first inequality.
Note that the second equality of the theorem:
Hp(wlo) + Hp(olm)
Hp(mlo) + Hp(olm) + Hpa(m) + Hp(o)

Hs(n'|o) + Hp(o|n') —eyro)
Hs(n'|0) + Hp(o|n) + H(@) + Ha(o)  °°

He(rlo) =

is equivalent to

Hp(o) +Hs(m)  Hp(o) + Hp(')

Ho(wlo) 1 (o) = Hop(w'fo) + (o) ©
Applying the definition of conditional entropy we can write:
Hp(wlo) — Hp(n'|o) 13: |fC‘r|L/~Lﬁ + U%T}f ~ U%Tf
and ) . ;
Hp(r) — Hp(n') = B[ + U&TL —1Bm| :
which implies
Hs(rlo) — Hs(x'lo) = (%)6 1363 (m) — Hs()]. @
Thus, we obtain:
Hp(n'|o) — Hp(rlo) = Ha(n') — Hg(m). (5)

10



Database J48 s=1 =15 |p8=2 B8=25
audiology 78.76% | 73.42% | 73.86% | 73.86% | 71.64%
hepatitis 78.06% | 83.22% | 83.22% | 83.87% | 83.87%
primary-tumor | 40.99% | 43.34% | 41.87% | 43.34%| 43.05%

Table 1. Accuracy Results

By denotings = Hz(o) andb = Hg(o|m) = Hg(o|n'), the Inequality (3) can be
written as:

a+ Hg(m) a+ Hg(m')
Hp(rlo) +b = Ha(n'lo) + b’

Elementary transformations yieldt g(n’'|0) — Hg(w|o) > %(}Cﬁ(w’) -

H()), which is implied by Inequality (5) becauﬁéﬁc}‘g—m < 1. This proves the
second inequality of the theorem. ‘ |

4. Experimental Resultsand Conclusions

The experiments have been conducte@®datasets from the UCI Machine Learn-
ing Repository. Tha4s tree builder from théleka package [WIT 00] was used, in its
original form as well as modified to support generalized entropies for different values
of the 5 parameter. Each experiment useébld crossvalidation, average has been
taken of the outcomes of thieruns and was performed with and without pruning.

The tree size and the number of leaves diminish for 20 of the 33 databases anal-
ysed and grow for the remaining 13. The best reduction in size was achieved for the
primary-tumor database, where the size of the tree was reduced to 3786fd2.5
and the number of leaves was reduced to 38.8% compared to the standard J48 algo-
rithm that makes use of the gain ratio. On another hand, the largestincrease in size and
number of leaves was recorded for thima-diabetes database, where fgt = 1,
we has an increase to 260% in size and to 256% in the number of leaves, though such
an increase occurs rarely among the 13 databases where increases occur.

In Figure 1 we show the comparative performance of the distadncapproach
compared to the standard gain ratio for the databases which yielded the best results
(audiology, hepatitis, andprimary-tumor), in the case of the prunned trees.
The 100% level refers in each case to the gain-ratio algorithm. It is interesting to ob-
serve that the accurracy diminishes slightly (by % for audiology database) orimproves
slightly, as shown in table 1, thus confirming previous results [MAN 91, BRE 98,
MIN 89] that accuracy is not affected substantially by the method used for tree con-
struction.

11



Tree size

120 120 120
110 — 1104 — 110 —
100 — 100 58 100 —]
01 L, . Dt 79 79 = 90 —
80473 __ 70l 804m — 80 —
70T = — 704l B 70 —
60||| = 60||| = 60 —
50 = 50 = 50 —]
e = 4| H 201> 3 34 36
04| E 04|l B 30
20 — 20 — 20
10 — 10+ — 10+
0 — 0 — 0
audiology hepatitis primary tumor
120 Number of leaves 120 120
110 — 1104 — 110 —
100 — 100+ =9 100 —
90-77 82 82 — 900 80 88 8——8 90 —]
804 /= 4 80-m — 80 —
70 — 5 70+ — 70+ —]
60||| = 60||| = 60 —
504 — 50 — 5040 39
01|l = a04||| = 40 ]
<l 1= 304l = 30
204||| = 204||| &= 20
104||| E 104||| &= 10
0 — 0 — 0
audiology hepatitis primary tumor
Theg factor:

M g=1= p=15BH =283 g=25

Figure 1. Comparative Experimental Results
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