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ABSTRACT. We introduce an extension of the notion of Shannon conditional entropy to a more
general form of conditional entropy that captures both the conditional Shannon entropy and a
similar notion related to the Gini index. The proposed family of conditional entropies generates
a collection of metrics over the set of partitions of finite sets, which can be used to construct
decision trees. Experimental results suggest that by varying the parameter that defines the
entropy it is possible to obtain smaller decision trees for certain databases without sacrificing
accurracy.

RÉSUMÉ. Nous présentons une extension de la notion de l’entropie conditionnelle de Shannon
à une forme plus générale d’entropie conditionnelle qui formalise l’entropie conditionnelle de
Shannon et une notion semblable liée à l’index de Gini. La famille proposée des entropies condi-
tionnelles produit d’une collection de métriques sur l’ensemble de partitions des ensembles
finis, qui peuvent être employées pour construire des arbres de décision. Les résultats expéri-
mentaux suggèrent qu’en changeant le paramètre qui définit l’entropie il soit possible d’obtenir
de plus petits arbres de décision pour certaines bases de données sans sacrifier l’exactitude de
la classification.

KEYWORDS: Shannon entropy, Gini index, generalized conditional entropy, metric, partition, de-
cision tree

MOTS-CLÉS : entropie de Shannon, index de Gini, entropie conditionnelle generalisée, métrique,
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1. Introduction

Traditionally, the notion of Shannon entropy is introduced for a random variable
distribution

X :
(

x1 · · · xn

p1 · · · pn

)

asH(X) = −∑n
i=1 pi log2 pi. A partitionπ = {B1, . . . , Bm} on a finite, nonempty

setA generates naturally a random variable

Xπ :

(
B1 · · · Bm
|B1|
|S| · · · |Bm|

|S|

)

We define the Shannon entropy ofπ as the Shannon entropy ofX π.

In [SIM 02] we introduced an axiomatization of a general notion of entropy for
partitions of finite sets. Our system of axioms shows the common nature of Shannon
entropy and of other measures of distribution concentration such that the Gini index.
The goal of this paper is to introduce a metric onPART(A) starting from generalized
conditional entropy of partitions. We show that these metrics generate selection cri-
teria for splitting attributes in the construction of decision trees that result in smaller
trees without any appreciable loss in accuracy.

Let PART(A) be the set of partitions of the nonempty setA. The class of all
partitions of finite sets is denoted byPART. The one-block partition ofA is denoted
by ωA, while the partition{{a} | a ∈ A} is denoted byιA. If π, π′ ∈ PART(A),
thenπ ≤ π′ if every block of π is included in a block ofπ ′. Clearly, for every
π ∈ PART(A) we haveιA ≤ π ≤ ωA. The partial ordered set(PART(A),≤) is
a lattice (see, for example a very lucid study of this lattice in [LER 81]). Ifσ, σ ′ ∈
PART(A), thenσ′ coversσ if σ ≤ σ′ and there is no partitionσ1 ∈ PART(A) such
thatσ ≤ σ1 ≤ σ′. This is denoted byσ ≺ σ ′. It is easy to see thatσ ≺ σ′ if and
only if σ′ can be obtained fromσ by fusing two of its blocks into a block ofσ ′. The
infimum of two partitionsπ, σ ∈ PART(A) will be denoted byπ ∧ σ.

Partitions play a central role in classifications. Indeed, if a set of tuplesT is de-
scribed by attributesa1, . . . , an, then each set of attributeK defines a partitionπ(K)
of T , where two tuples belong to the same block ofπ(K) if they have equal projec-
tions onK. Note thatH ⊆ K, thenπ(K) ≤ π(H) for any attribute setsH and
K.

If A, B are two disjoint and nonempty sets,π ∈ PART(A), σ ∈ PART(B), where
π = {A1, . . . , Am}, σ = {B1, . . . , Bn}, then the partitionπ + σ is the partition of
A∪B given byπ + σ = {A1, . . . , Am, B1, . . . , Bn}. Whenever the “+” operation is
defined, then it is easily seen to be associative. In other words, ifA, B, C are pairwise
disjoint and nonempty sets, andπ ∈ PART(A), σ ∈ PART(B), τ ∈ PART(C), then
π + (σ + τ) = (π + σ) + τ . Observe that ifA, B are disjoint, thenιA + ιB = ιA∪B.
Also, ωA + ωB is the partition{A, B} of the setA ∪ B.
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Let π = {A1, . . . , Am} ∈ PART(A) andσ = {B1, . . . , Bn} ∈ PART(B). The
partition{Ai × Bj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} of A × B is denoted byπ × σ. Note
thatιA × ιB = ιA×B andωA × ωB = ωA×B.

The axiomatization introduced in [SIM 02] consists of four axioms satisfied by
several types of entropy-like characteristics of partitions.

Definition 1.1 Let β ∈ R, β > 0, and letΦ : R
2
≥0 −→ R≥0 be a continuous function

such thatΦ(x, y) = Φ(y, x), Φ(x, 0) = x for x, y ∈ R≥0.

A (Φ, β)-system of axioms for a partition entropy H : PART(A) −→ R≥0 consists
of the following axioms:

(P1) If π, π′ ∈ PART(A) are such thatπ ≤ π′, thenH(π′) ≤ H(π).

(P2) If A, B are two finite sets such that|A| ≤ |B|, thenH(ιA) ≤ H(ιB).

(P3) For every disjoint setsA, B and partitionsπ ∈ PART(A), andσ ∈ PART(B)
we have:

H(π + σ) =
( |A|
|A| + |B|

)β

H(π) +
( |B|
|A| + |B|

)β

H(σ) + H({A, B}).

(P4) If π ∈ PART(A) andσ ∈ PART(B), thenH(π × σ) = Φ(H(π), H(σ)).

Observe that we postulate thatH(π) ≥ 0 for any partitionπ since the range of every
functionH is R≥0.

For a choice ofβ these axioms determine an entropy functionH β up to a con-
stant factor. The same choice also determines the functionΦ. The entropies de-
fined for β 	= 1 were namednon-Shannon entropies. In this case, for a partition

π = {A1, . . . , An} ∈ PART(A) we have:Hβ(π) = k

(
1 −∑n

j=1

(
|Aj |
|A|
)β
)

, where

k is a constant that satisfies the inequalityk(β − 1) > 0. Thus, forβ > 1 we have

Hβ(π) = c


1 −

n∑
j=1

( |Aj |
|A|

)β

 ,

and forβ < 1 we have

Hβ(π) = c


 n∑

j=1

( |Aj |
|A|

)β

− 1


 ,

for some positive constantc, wherec = k if β > 1, andc = −k whenβ < 1. In
either case, we haveΦ(x, y) = x + y − 1

kxy for x, y ∈ R≥0.

3



The caseβ = 1 yields the Shannon entropy, that is

H1(π) = −c

n∑
j=1

|Aj |
|A| log2

|Aj |
|A| .

Also, if β = 1, thenΦ(x, y) = x + y for x, y ∈ R≥0.

2. Metrics on Partitions Induced by Generalized Entropies

The generalized entropies previously introduced generate corresponding general-
ized conditional entropies. Letπ ∈ PART(A) and letC ⊆ A. Denote byπC the
“trace” of π on C given byπC = {B ∩ C|B ∈ π such thatB ∩ C 	= ∅}. Clearly,
πC ∈ PART(C); also, ifC is a block ofπ, thenπC = ωC .

Definition 2.1 Theconditional entropy defined by the(Φ, β)-entropyH is the func-
tion Hβ : PART2 −→ R≥0 given by: Hβ(π|σ) =

∑n
j=1

|Cj|
|A| · Hβ(πCj ), where

π, σ ∈ PART(A) andσ = {C1, . . . , Cn}.

Observe thatHβ(π|ωA) = Hβ(π).

A direct consequence of the Axioms is thatH(ωA) = 0 for any setA (Lemma II.2
from [SIM 02]). The following reciprocal result also holds:

Lemma 2.2 Let A be a finite set and let π ∈ PART(A) such that H(π) = 0. Then,
π = ωA.

Proof. Suppose thatHβ(π) = 0 but π < ωA. Then, there exists a blockC of
π such that∅ ⊂ C ⊂ A. If θ = {C, A − C}, then clearly we haveπ ≤ θ, so
0 ≤ Hβ(θ) ≤ Hβ(π), which impliesHβ(θ) = 0. If β > 1, then

Hβ(θ) = c

(
1 −

( |C|
|A|
)β

−
( |A − C|

|A|
)β
)

= 0.

The concavity of the functionf(x) = xβ + (1 − x)β on [0, 1] (whenβ > 1) implies
eitherC = A or C = ∅, which is a contradiction. Thus,π = ωA. A similar argument
works for the other cases.

Theorem 2.3 Let A be a finite set and let π, σ ∈ PART(A). We have Hβ(π|σ) = 0
if and only if σ ≤ π.

Proof. Suppose thatσ = {C1, . . . , Cn}. If σ ≤ π, thenπCj = ωCj for 1 ≤ j ≤ n,
soHβ(π|σ) = 0. Conversely, suppose that

Hβ(π|σ) =
n∑

j=1

|Cj |
|A| · Hβ(πCj ) = 0.
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This impliesHβ(πCj ) = 0 for 1 ≤ j ≤ n, so πCj = ωCj for 1 ≤ j ≤ n by
Lemma 2.2. This means that every blockCj of σ is included in a block ofπ, which
impliesσ ≤ π.

Note that the partitionπ∧σ whose blocks consist of nonempty intersectionsπ and
σ can be written asπ ∧ σ = πC1 + · · · + πCn = σB1 + · · · + σBm . Therefore, by

Corollary II.7 of [SIM 02], we have:Hβ(π∧σ) =
∑n

j=1

( |Cj|
|A|
)β

Hβ(πCj )+Hβ(σ).

For those entropies withβ > 1 we have

Hβ(π ∧ σ) ≤ Hβ(π|σ) + Hβ(σ), (1)

while for those havingβ < 1, the reverse inequality holds. In the case of Shannon
entropy,β = 1 and

H1(π ∧ σ) = H1(π|σ) + H1(σ) (2)

= H1(σ|π) + H1(π).

Lemma 2.4 Let a, b ∈ [0, 1] such that a + b = 1. Then, for β > 1 we have:

n∑
i=1

(axi + byi)β ≤ a

n∑
i=1

xβ
i + b

n∑
i=1

yβ
i ,

for every x1, . . . , xn, y1, . . . , yn ∈ [0, 1]. For β < 1, the reverse inequality holds.

Proof. The statement follows immediately from concavity of the functionf(x) =
xβ for β > 1 on the interval[0, 1].

Theorems 2.5 and 2.8 extend well-known monotonicity properties of Shannon en-
tropy.

Theorem 2.5 If π, σ, σ′ are partitions of the finite set A such that σ ≤ σ ′, then
Hβ(π|σ) ≤ Hβ(π|σ′) for β > 0.

Proof. To prove this statement it suffices to consider only the case whenσ ≺ σ ′.
Suppose initially thatβ > 1.

Let σ, σ′ ∈ PART(A) such thatσ ≺ σ′. Suppose thatD, E are blocks ofσ such
thatC = D ∪ E, whereC is a block ofσ ′; the partitionπ is {B1, . . . , Bn}.

Definexi = |Bi∩D|
|D| andyi = |Bi∩E|

|E| for 1 ≤ i ≤ n. If we choosea = |D|
|C| and

b = |E|
|C| , then

|C|
n∑

i=1

|Bi ∩ C|β
|C|β ≤ |D|

n∑
i=1

|Bi ∩ D|β
|D|β + |E|

n∑
i=1

|Bi ∩ E|β
|E|β ,
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by Lemma 2.4. Consequently, we can write:

Hβ(π|σ) = · · · + |D|
|A|Hβ(πD) +

|E|
|A|Hβ(πE) + · · ·

= · · · + |D|
|A|

(
1 −

n∑
i=1

|Bi ∩ D|β
|D|β

)
+

|E|
|A|

(
1 −

n∑
i=1

|Bi ∩ E|β
|E|β

)
+ · · ·

≤ · · · + |C|
|A|

(
1 −

n∑
i=1

|Bi ∩ C|β
|C|β

)
+ · · · = Hβ(π|σ′).

Forβ < 1 we have

|C|
n∑

i=1

|Bi ∩ C|β
|C|β ≥ |D|

n∑
i=1

|Bi ∩ D|β
|D|β + |E|

n∑
i=1

|Bi ∩ E|β
|E|β ,

by the second part of Lemma 2.4. Thus,

Hβ(π|σ) = · · · + |D|
|A|Hβ(πD) +

|E|
|A|Hβ(πE) + · · ·

= · · · + |D|
|A|

(
n∑

i=1

|Bi ∩ D|β
|D|β − 1

)
+

|E|
|A|

(
n∑

i=1

|Bi ∩ E|β
|E|β − 1

)
+ · · ·

≤ · · · + |C|
|A|

(
n∑

i=1

|Bi ∩ C|β
|C|β − 1

)
+ · · · = Hβ(π|σ′).

Forβ = 1 the inequality is a well-known property of Shannon entropy.

Corollary 2.6 For every π, σ ∈ PART(A) and β > 0, we have Hβ(π|σ) ≤ Hβ(π).

Proof. Sinceσ ≤ ωA, by Theorem 2.5 we haveHβ(π|σ) ≤ Hβ(π|ωA) = Hβ(π).

Corollary 2.7 Let A be a finite set. For β ≥ 1 we have Hβ(π∧σ) ≤ Hβ(π)+Hβ(σ)
for every π, σ ∈ PART(A).

Proof. By Inequality (1) and by Corollary 2.6 we have

Hβ(π ∧ σ) ≤ Hβ(π|σ) + Hβ(σ) ≤ Hβ(π) + Hβ(σ).

Theorem 2.8 If π, π′, σ are partitions of the finite set A such that π ≤ π ′, then
Hβ(π|σ) ≥ Hβ(π′|σ).
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Proof. Suppose thatσ = {C1, . . . , Cn}. Then, it is clear thatπCj ≤ π′
Cj

for 1 ≤
j ≤ n. Therefore,Hβ(πCj ) ≥ Hβ(π′

Cj
) by Axiom (P1), which implies immediately

the desired inequality.

Lemma 2.9 Let A be a nonempty set and let {A′, A′′} be a two-block partition of A.
If π ∈ PART(A), σ′ ∈ PART(A′), and σ′′ ∈ PART(A′′), then

Hβ(π|σ′ + σ′′) =
|A′|
|A| Hβ(π′|σ′) +

|A′′|
|A| Hβ(π′′|σ′′),

where π′ = πA′ and π′′ = πA′′ .

Proof. Note thatσ′ +σ′′ is a partition ofA. The lemma follows immediately from
the definition of conditional entropy.

Theorem 2.10 Let A be a nonempty set and let {A1, . . . , A�} be a partition of A. If
π ∈ PART(A), σk ∈ PART(Ak) for 1 ≤ k ≤ �, then

Hβ(π|σ1 + · · · + σ�) =
�∑

k=1

|Ak|
|A| Hβ(πk|σk)

where πk = πAk
for 1 ≤ k ≤ �.

Proof. The result follows immediately from Lemma 2.9 due to the associativity of
the partial operation “+”.

Theorem 2.11 If β > 1, then for every three partitions π, σ, τ of a finite set A we
have

Hβ(π|σ ∧ τ) + Hβ(σ|τ) ≥ Hβ(π ∧ σ|τ).

If β < 1 we have the reverse inequality, and for β = 1 we have the equality

Hβ(π|σ ∧ τ) + Hβ(σ|τ) = Hβ(π ∧ σ|τ).

Proof. Suppose thatπ = {B1, . . . , Bm}, σ = {C1, . . . , Cm}, andτ = {D1, . . . , D�}.
We noted already thatσ ∧ τ = σD1 + · · · + σD�

= τC1 + · · · + τCn . Consequently,
by Theorem 2.10 we haveHβ(σ ∧ π) =

∑�
k=1

|Dk|
|A| Hβ(πDk

|σDk
). Also, we have

Hβ(σ|τ) =
∑�

k=1
|Dk|
|A| Hβ(σDk

).
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If β > 1 we saw thatHβ(πDk
∧ σDk

) ≤ Hβ(πDk
|σDk

) + Hβ(σDk
), for everyk,

1 ≤ k ≤ �, which implies

Hβ(σ ∧ π) + Hβ(σ|τ) ≥
�∑

k=1

|Dk|
|A| Hβ(πDk

∧ σDk
)

=
�∑

k=1

|Dk|
|A| Hβ((π ∧ σ)Dk

)

= Hβ(π ∧ σ|τ).

Using a similar argument we obtain the second inequality of the theorem. The equality
for the Shannon case was obtained in [MÁN 91].

Corollary 2.12 Let A be a finite set. For β ≥ 1 and for π, σ, τ ∈ PART(A) we have
the inequality: Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|τ).

Proof. Note that by Theorem 2.5 we have:Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|σ ∧
τ)+Hβ(σ|τ). Therefore, forβ ≥ 1, by Theorems 2.11 and 2.8 we obtainH β(π|σ)+
Hβ(σ|τ) ≥ Hβ(π ∧ σ|τ) ≥ Hβ(π|τ).

Definition 2.13 Let β > 1. The mappingdβ : PART(A)2 −→ R≥0 is defined by
dβ(π, σ) = Hβ(π|σ) + Hβ(σ|π) for π, σ ∈ PART(A).

The following result generalizes a result of López de Mántaras:

Corollary 2.14 dβ is a metric on PART(A).

Proof. If dβ(π, σ) = 0, thenHβ(π|σ) = Hβ(σ|π) = 0. Therefore, by Theo-
rem 2.3 we haveσ ≤ π andπ ≤ σ, soπ = σ. The symmetry ofdβ is immediate. The
triangular property is a direct consequence of Corollary 2.12.

In [MÁN 91] it is shown that the mappinge1 : PART(A)2 −→ R≥0 that corre-
sponds to Shannon entropy, defined by

e1(π, σ) =
d1(π, σ)

H1(π ∧ σ)

for π, σ ∈ PART(A) is also a metric onPART(A). This result is extended next.

Theorem 2.15 Let A be a finite, non-empty set. For β ≥ 1, the mapping eβ :
PART(A)2 −→ R≥0 defined by

eβ(π, σ) =
2dβ(π, σ)

dβ(π, σ) + Hβ(π) + Hβ(σ)

for π, σ ∈ PART(A) is a metric on PART(A) such that 0 ≤ eβ(π, σ) ≤ 1.
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Proof. It easy to see that0 ≤ eβ(π, σ) ≤ 1 since, by Corollary 2.6,Hβ(π) +
Hβ(σ) ≥ Hβ(π|σ) + Hβ(σ|π) = dβ(π, σ). We need to show only that the triangular
inequality is satisfied byeβ for β > 1. We can write:

eβ(π, σ) + eβ(σ, τ) =
Hβ(π|σ)+Hβ(σ|π)

Hβ(π|σ)+Hβ(σ|π)+Hβ(π)+Hβ(σ) + Hβ(σ|τ)+Hβ(τ |σ)
Hβ(σ|τ)+Hβ(τ |σ)+Hβ(σ)+Hβ(τ) .

Note that

Hβ(π|σ) + Hβ(σ|π) + Hβ(π) + Hβ(σ) ≤
Hβ(π|σ) + Hβ(σ|π) + Hβ(σ|τ) + Hβ(τ |σ) + Hβ(π) + Hβ(τ)

becauseHβ(σ) ≤ Hβ(σ|τ) + Hβ(τ) by Inequality (1) and Axiom(P1). Similarly,

Hβ(σ|τ) + Hβ(τ |σ) + Hβ(σ) + Hβ(τ) ≤
Hβ(π|σ) + Hβ(σ|π) + Hβ(σ|τ) + Hβ(τ |σ) + Hβ(π) + Hβ(τ)

becauseHβ(σ) ≤ Hβ(σ|π) + Hβ(π). This yields the inequality:

eβ(π, σ) + eβ(σ, τ) ≥
Hβ(π|σ)+Hβ(σ|π)+Hβ(σ|τ)+Hβ(τ |σ)

Hβ(π|σ)+Hβ(σ|π)+Hβ(σ|τ)+Hβ(τ |σ)+Hβ(π)+Hβ(τ) =
1

1+
Hβ(π)+Hβ (τ)

Hβ(π|σ)+Hβ (σ|π)+Hβ (σ|τ)+Hβ (τ|σ)

≥
1

1+
Hβ (π)+Hβ(τ)

Hβ(π|τ)+Hβ (τ|π)

= eβ(π, τ).

,

For β = 1, e1(π, σ) = d1(π,σ)
H1(π∧σ) , due to equality (2), which coincides with the

expression obtained in [MÁN 91] for the normalized distance.

3. Generalized Gain as a Selection Criterion for Splitting Attributes in Decision
Trees

The standard selection criterion for splitting attributes is the information gain used
by Quinlan [QUI 93] in the classical C4.5 algorithm. We show that choosing the
splitting attributeA based on the least value ofdβ(π(A), π), whereπ is the partition
of the training set that corresponds to the target attribute of the classification generates
smaller trees with comparable degrees of accuracy.

Let π, σ ∈ PART(A). Theβ-gain of σ relative toπ is the expressionGβ(π, σ) =
Hβ(π) − Hβ(π|σ). The gain ratio is given byRβ(π, σ) = Gβ(π,σ)

Hβ(σ) . Forβ = 1 we
obtain Quinlan’s gain defined through Shannon’s entropy.

The next theorem establishes a monotonicity property of the distanced β that shows
that dβ does not favor attributes with large domains, an issue that is important for
building decision trees.
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Theorem 3.1 Let A be a finite set and let π, π ′, σ ∈ PART(A) be such that π′ is
covered by π. In other words, π = {B1, . . . , Bm} and π′ = {B1, . . . , B

′
m, B′′

m},
where Bm = B′

m ∪ B′′
m. Suppose also that there exists a block C of σ such that

Bm ⊆ C. Then, if β ≥ 1, we have dβ(π, σ) ≤ dβ(π′, σ) and eβ(π, σ) ≤ eβ(π′, σ).

Proof. For the case of Shannon’s entropy,β = 1, the inequalities were proven
in [MÁN 91]. Therefore, we can assume thatβ > 1.

We claim that under the hypothesis of the theorem we haveHβ(σ|π) = H(σ|π′).
Note thatσBm = ωBm , σB′

m
= ωB′

m
, andσB′′

m
= ωB′′

m
, sinceB′

m, B′′
m ⊆ Bm ⊆ C.

Therefore,H(σBm) = H(σB′
m

) = H(σB′′
m

) = 0, hence

Hβ(σ|π) =
m∑

i=1

|Bi|
|A| Hβ(σBi ) =

m−1∑
i=1

|Bi|
|A| Hβ(σBi) = Hβ(σ|π′).

Theorem 2.8 impliesHβ(π|σ) ≤ Hβ(π′|σ), which gives the first inequality.

Note that the second equality of the theorem:

Hβ(π|σ) =
Hβ(π|σ) + Hβ(σ|π)

Hβ(π|σ) + Hβ(σ|π) + Hβ(π) + Hβ(σ)

≤ Hβ(π′|σ) + Hβ(σ|π′)
Hβ(π′|σ) + Hβ(σ|π′) + Hβ(π′) + Hβ(σ)

= eβ(π′, σ)

is equivalent to

Hβ(σ) + Hβ(π)
Hβ(π|σ) + Hβ(σ|π)

≥ Hβ(σ) + Hβ(π′)
Hβ(π′|σ) + Hβ(σ|π′)

. (3)

Applying the definition of conditional entropy we can write:

Hβ(π|σ) − Hβ(π′|σ) =
|C|
|A|

[ |B′
m|β

|C|β +
|B′′

m|β
|C|β − |Bm|β

|C|β
]

and

Hβ(π) − Hβ(π′) =
|B′

m|β + |B′′
m|β − |Bm|β

|A|β ,

which implies

Hβ(π|σ) − Hβ(π′|σ) =
( |A|
|C|
)β−1

[Hβ(π) − Hβ(π′)] . (4)

Thus, we obtain:

Hβ(π′|σ) − Hβ(π|σ) ≥ Hβ(π′) − Hβ(π). (5)
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Database J48 β = 1 β = 1.5 β = 2 β = 2.5

audiology 78.76% 73.42% 73.86% 73.86% 71.64%
hepatitis 78.06% 83.22% 83.22% 83.87% 83.87%
primary-tumor 40.99% 43.34% 41.87% 43.34% 43.05%

Table 1. Accuracy Results

By denotinga = Hβ(σ) andb = Hβ(σ|π) = Hβ(σ|π′), the Inequality (3) can be
written as:

a + Hβ(π)
Hβ(π|σ) + b

≥ a + Hβ(π′)
Hβ(π′|σ) + b

,

Elementary transformations yield:Hβ(π′|σ) − Hβ(π|σ) ≥ b+Hβ(π|σ)
a+Hβ(π) (Hβ(π′) −

Hβ(π)), which is implied by Inequality (5) becauseb+Hβ(π|σ)
a+Hβ(π) ≤ 1. This proves the

second inequality of the theorem.

4. Experimental Results and Conclusions

The experiments have been conducted on33 datasets from the UCI Machine Learn-
ing Repository. The��� tree builder from the���� package [WIT 00] was used, in its
original form as well as modified to support generalized entropies for different values
of the β parameter. Each experiment used5-fold crossvalidation, average has been
taken of the outcomes of the5 runs and was performed with and without pruning.

The tree size and the number of leaves diminish for 20 of the 33 databases anal-
ysed and grow for the remaining 13. The best reduction in size was achieved for the
�	
��	�
����	 database, where the size of the tree was reduced to 37% forβ = 2.5
and the number of leaves was reduced to 38.8% compared to the standard J48 algo-
rithm that makes use of the gain ratio. On another hand, the largest increase in size and
number of leaves was recorded for the�
��
�
������ database, where forβ = 1,
we has an increase to 260% in size and to 256% in the number of leaves, though such
an increase occurs rarely among the 13 databases where increases occur.

In Figure 1 we show the comparative performance of the distanced β approach
compared to the standard gain ratio for the databases which yielded the best results
(���
�����, �����
�
�, and�	
��	�
����	), in the case of the prunned trees.
The 100% level refers in each case to the gain-ratio algorithm. It is interesting to ob-
serve that the accurracy diminishes slightly (by % for audiology database) or improves
slightly, as shown in table 1, thus confirming previous results [MÁN 91, BRE 98,
MIN 89] that accuracy is not affected substantially by the method used for tree con-
struction.
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Figure 1. Comparative Experimental Results
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