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Abstract

We study an algorithm for feature selection that clusters
attributes using a special metric and then makes use of the
dendrogram of the resulting cluster hierarchy to choose the
most relevant attributes. The main interest of our technique
resides in the improved understanding of the structure of
the analized data and of the relative importance of the at-
tributes for the selection process.

1 Introduction

The performance, robustness, and usefulness of classi-
fication algorithms are improved when relatively few fea-
tures are involved in the classification. Thus, selecting rele-
vant features for the construction of classifiers has received
a great deal of attention. A lucid taxonomy of algorithms for
feature selection was discussed in [17]; a more recent ref-
erence is [7]. Several approaches to feature selection have
been explored, including wrapper techniques [12], support
vector machines [6], neural networks [11] and prototype-
based feature selection [9] that is close to our own approach.

The central idea of this work is to introduce an algorithm
for feature selection that clusters attributes using a special
metric and, then uses a hierarchical clustering for feature
selection.

Hierarchical algorithms generate clusters that are placed
in a cluster tree, which is commonly known as adendro-
gram. Clusterings are obtained by extracting those clusters
that are situated at a given height in this tree.

Our intent is to show that good classifiers can be built

by using a small number of attributes located at the centers
of the clusters identified in the dendrogram. This type of
data compression can be achieved with little or no penalty
in terms of the accuracy of the classifier produced. The clus-
tering of attributes helps the user to understand the structure
of data, the relative importance of attributes. Alternative
feature selection method mentioned above are excellent in
reducing the data without having a severe impact on the ac-
curacy of classifiers; however, such methods cannot identify
how attributes are related to each other.

An object systemis a pairS = (S, H), whereS is set
called the set of objects ofS, H = {A1, . . . , Am} is a set
of mappings defined onS. We assume that for each map-
pingAi (referred to as an attribute (or a feature) ofS) there
exists a nonempty setEi called the domain ofAi such that
Ai : S −→ Ei for 1 ≤ i ≤ m. The value of an attribute
Ai on an objectt is denoted byt[Ai]. This terminology is
consistent with the terminology used in relational databases,
where a table can be regarded as an object system; however,
the notion of object system is more general because objects
have an identity as members of the setS, instead of being
regarded as justm-tuples of values. In this spirit, we shall
refer tot[Ai] asprojection oft onAi.

LetS be a set. Apartition onS is a non-empty collection
of subsets ofS indexed by a setI, π = {Bi | i ∈ I} such
that

⋃
i∈I Bi = S andi 6= j impliesBi ∩Bj = ∅. The sets

Bi are commonly referred to as theblocks of the partition
π. The set of partitions onS is denoted byPART(S).

An attributeA of an object systemS = (S,H) generates
a partitionπA of the set of objectsS, where two objects be-
long to the same block ofπA if they have the same projec-
tion onA. We denote byBA

a the block ofπA that consists
of all tuples ofS whoseA-component isa. Note that for



relational databases,πA is the partition of the set of rows of
a table that is obtained by using thegroup by A option of
selectin standard SQL.

The set of partitions of a set can be naturally equipped
with a partial order. Forπ, σ ∈ PART(S) we writeπ ≤ σ
if every blockB of π is included in a block ofσ, or equiv-
alently, if every block ofσ is an exact union of blocks ofπ.
This partial order generates a lattice structure onPART(S);
this means that for every two partitionsπ, π′ ∈ PART(S)
there is a least partitionπ1 such thatπ ≤ π1 andπ′ ≤ π1

and there is a largest partitionπ2 such thatπ2 ≤ π and
π2 ≤ π′. The first partition is denoted byπ ∨ π′, while the
second is denoted byπ ∧ π′.

2 Distance between partitions and the Pear-
son index

To introduce a metric on the set of partitions of a finite
set we define the mappingv : PART(S) −→ R by v(π) =∑n

i=1 |Bi|2, whereπ = {B1, . . . , Bn}. The mappingv is a
lower valuation onPART(S), that is,

v(π ∨ σ) + v(π ∧ σ) ≥ v(π) + v(σ) (1)

for π, σ ∈ PART(S).
For every lower valuationv the mapping d :

(PART(S))2 −→ R defined byd(π, σ) = v(π)+v(σ)−2 ·
v(π ∧ σ) is a metric onPART(S) (see [3, 2, 14]). We will
refer tod as theBarthélemy-Montjardet distance.

Using the cardinalities of the blocks of the partitions we
can write

d(π, σ) =
∑

i

|Bi|2 +
∑

j

|Cj |2 − 2
∑

i

∑

j

|Bi ∩ Cj |2,

whereπ = {B1, . . . , Bn} andσ = {C1, . . . , Cp}. This
metric was used for the development of an incremental clus-
tering algorithm[15]. In this paper we use it to cluster at-
tributes.

For a partitionπ = {B1, . . . , Bn} denote byMπ and
mπ the largest and the smallest size of a block ofπ.

Let π = {B1, . . . , Bn}, σ = {C1, . . . , Cp} be two par-
titions. Thecontingency matrixof π, σ is the matrixPπ,σ

whose entries are given bypij = |Bi ∩ Cj | for 1 ≤ i ≤ n
and1 ≤ j ≤ p. The Pearsonχ2 association index can be
written in our framework as:

χ2
π,σ =

∑

i

∑

j

(pij − |Bi||Cj |)2
|Bi| · |Cj | .

It is well-known (See [1]) that the asymptotic distribution of
this index is aχ2-distribution with(n − 1)(p − 1) degrees
of freedom.

Theorem 2.1 LetS be a finite set and letπ, σ ∈ PART(S),
whereπ = {B1, . . . , Bn} and σ = {C1, . . . , Cp}. We
have:

v(π)+v(σ)−d(π,σ)
2MπMσ

− 2np + |S|2
≤ χ2

π,σ ≤
v(π)+v(σ)−d(π,σ)

2mπmσ
− 2np + |S|2.

Proof.Note thatχ2
π,σ =

∑
i

∑
j

p2
ij

|Bi|·|Cj | − 2np + |S|2.
Sincemπmσ ≤ |Bi||Cj | ≤ MπMσ, we have:

p2
ij

MπMσ
≤ p2

ij

|Bi| · |Cj | ≤
p2

ij

mπmσ
.

Thus,

v(π ∧ σ)
MπMσ

− 2np + |S|2 ≤ χ2
π,σ ≤

v(π ∧ σ)
mπmσ

− 2np + |S|2

Sinced(π, σ) = v(π) + v(σ) − 2
∑

i

∑
j p2

ij , the desired
equality follows immediately.

The Pearson coefficient decreases with the distance and,
thus, the probability thatπ andσ are independent increases
with the distance. This suggest that partitions that are cor-
related are close in the sense of the Barthélemy-Montjardet
distance; therefore, if attributes are clustered using the cor-
responding distance between partitions we could replace
clusters with their centroids and, thereby, drastically reduce
the number of attributes involved in a classification without
significant decreases in accuracy of the resulting classifiers.

3 Experimental Validation

We experimented with several data sets from the UCI
dataset repository [4] and, due to space limitations we dis-
cuss only the results obtained with thevotes and zoo
datasets, which have a relative small number of cate-
gorical features. In each case, starting from the ma-
trix (d(πAi , πAj )) of Barth́elemy-Montjardet distances be-
tween the partitions of the attributesA1, . . . , An, we clus-
tered the attributes usingAGNES, an agglomerative hier-
archical algorithm [10] implemented as a component of the
cluster package of system R (see [13]).

Clusterings were extracted from the tree produced by the
algorithm by cutting the tree at various heights starting with
the maximum height of the tree created above (correspond-
ing to a single cluster) and working down to a height of 0
(which consists of single-attribute clusters). A ‘representa-
tive’ attribute was created for each cluster as the attribute
that has the minimum total distance to the other members
of the cluster, again using the Barthélemy-Montjardet dis-
tance. The J48 and the Naı̈ve Bayes algorithms of the
WEKA package [16] were used for constructing classifiers
on data sets obtained by projecting the initial data sets on
the sets of representative attributes.
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Figure 1. Dendrogram of votes Dataset using
AGNES and the Ward method

The datasetvotes records the votes of 435 US Con-
gressmen on 15 key questions, where each attribute can
have the value ”y”,”n”, or ”?” (for abstention), and each
Congressman is classified as a democrat or republican. It
is interesting to note that by applying theAGNES clus-
tering algorithm with the Ward method of computing the
inter-cluster distance the voting issues group naturally into
clusters that involve larger issues, as shown in Figure 1. For
example, ”elsalvadoraid”,”aid to nicaraguancontras”,
”mx missile”, and ”antisatellitetestban” are grouped
quite early into a cluster that can be described as deal-
ing with defence policies. Similarly, social budgetary
legislation issues such as ”budgetresolution”, ”physi-
cian fee freeze”, and ”educationspending”, are grouped
together.

Two types of classifiers (J48 and Naı̈ve Bayes) were gen-

Attribute Set Classifiers
(class attribute not listed) J48% NB%
1,2,3,4,5,6,7,8,9,10,11,12,13,14,1596.78 90.34
1,2,3,4,5,6,7,9,10,11,12,13,14,15 96.78 91.03
1,2,3,4,5,6,7,10,11,12,13,14,15 96.55 91.26
1,2,4,5,6,7,10,11,12,13,14,15 95.17 92.18
1,2,4,5,6,10,11,12,13,14,15 95.17 92.64
1,2,4,5,6,10,11,13,14,15 95.40 92.18
1,2,6,8,10,11,13,14,15 86.20 85.28
1,2,8,10,11,13,14,15 86.20 85.74
1,2,8,10,11,14,15 84.13 85.74
1,2,8,10,11,14 83.69 85.74
2,8,10,11,14 83.67 84.36
2,5,10,11 88.73 88.50
2,5,10 84.82 84.82
2,5 84.82 84.82
5 84.82 84.82

Table 1. Accuracy of classifiers for the Votes
dataset constructed on attribute sets ob-
tained by clustering

erated using ten-fold cross validation by extracting centrally
located attributes from cluster obtained by cutting the den-
drogram at successive levels. The accuracy of these classi-
fiers is shown in Table 1. This experiment shows that our
method identifies the most influential attribute 5 (in this case
”el salvadoraid”). So, in addition to reducing number of at-
tributes, the proposed methodology allows us to assess the
relative importance of attributes.

A similar study was undertaken for thezoo database,
after eliminating the attributeanimal which determines
uniquely the type of the animal. Starting from a dendro-
gram build by using the Ward method shown in Figure 2 we
constructed J48 and Naı̈ve Bayes classifiers for several sets
of attributes obtained as successive sections of the cluster
tree. The results are shown in Table 2. Note that attributes
that are biologically correlated (e.g. hair,milk, and eggs, or
aquatic (6), breathes (10), and fins(12)) belong to relatively
early clusters).

We believe that the main interest of the proposed ap-
proach to attribute selection is the possibility of the su-
pervision of the process allowing the user to opt between
quasi-equivalent attributes (that is, attributes that are close
relatively to the Barth́elemy-Montjardet metric) in order to
produce more meaningful classifiers. We compared our ap-
proach with two existing attribute set selection techniques:
the correlation-based feature (CSF) selection (developed
in [8] and incorporated in the WEKA package and the wrap-
per technique, using the “best-first” and the greedy method
as search methods, and the J48 classifier for the classifier
incorporated by the wrapper. For thezoo data set we ob-
tained identical attribute sets with either “best-first” or with
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Figure 2. Dendrogram of zoo dataset using
AGNES and the Ward method

Attribute Set Classifiers
(class attribute not listed) J48% NB%
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1692.07 93.06
1,2,4,5,6,7,8,9,10,11,12,13,14,15,16 92.07 92.07
2,4,5,6,7,8,9,10,11,12,13,14,15,16 87.12 88.11
2,4,5,6,7,8,9,10,11,12,13,15,16 87.12 88.11
2,4,6,7,8,9,10,11,12,13,15,16 88.11 87.12
2,4,6,7,8,9,10,11,13,15,16 91.08 91.08
2,4,6,7,8,9,10,11,13,16 89.10 90.09
2,4,7,8,9,10,11,13,16 86.13 90.09
2,4,7,9,10,11,13,16 84.15 90.09
2,4,7,9,10,11,13 87.12 89.10
4,5,7,9,10,11 88.11 88.11
4,5,7,9,10 88.11 90.09
4,5,9,10 89.10 91.09
4,5,10 73.26 73.26
4,10 73.26 73.26
4 60.39 60.39

Table 2. Accuracy of classifiers for the zoo
dataset constructed on attribute sets ob-
tained by clustering

Attribute Experimental
Selection Results

CSF
Attr. set: 1,2,4,8,9,10,12,13,14
Accuracy for J48: 91.08%
Accuracy for NB: 95.04%

Wrapper with J48
Attr. set: 1,2,4,8,9,12,13
Accuracy for J48: 96.03%
Accuracy for NB: 92.07%

Table 3. Accuracy of classifiers obtained
through attribute selection techniques

the greedy method. The results are shown in Table 3.
These results suggest that this method is not as good for

accuracy as the the wrapper method or CSF. However, the
tree of attributes helps to understand the relationships be-
tween attributes and their relative importance.

4 Conclusion and Future Work

Attribute clustering help to build classifiers in a semi-
supervised manner allowing analysts a certain degree of
choice in the selection of the features that may be consid-
ered by classifiers, and illuminating relationships between
attributes and their relative importance for classification.

As stated in [7], in early studies of relevance published
in the late 90s [5, 12], few applications explored data with
more than 40 attributes. With the increased interest of data
miners in bio-computing in general, and in microarray data
in particular, classification problems that involve thousands
of features and relatively few examples came to the fore.
We intend to apply our techniques to this type of data.
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