CS 110 Fundamentals of Computing - Exam 2
Professor Bolker (day section)

Tuesday, April 27, 2004
Closed book and notes

Attached you will find the source code for five classes that make up the SimpleWISE package, which implements a small fraction of what you might consider as part of the design of your final project. Use it to answer some of the questions that follow. You need not turn in that source code, so feel free to pull it loose so that it’s easier to refer to. Please keep the rest of the papers stapled together.

1. Suppose SimpleWISE is run this way:
> java SimpleWISE cs683 cs110
a. (10 %) What output will be produced? (Hint/warning – there is no professors list and SimpleWISE error handling is not as good as it should be – see the next part of this question.)

> java SimpleWISE cs683 cs110
SimpleWISE: created lists for [courses, students]

No such list: professors

List of courses

Tue Apr 27 13:39:56 EDT 2004

cs110
cs683

List of students

Tue Apr 27 13:39:57 EDT 2004
b. (10 %) Explain why the students list is empty when printed. How would you fix the code so that SimpleWISE knew about Solomon and Eleanor? (Answer on the other side of this page.)
The WISEException thrown when line 63 executes transfers execution directly to the catch block, skipping lines 64 and 65. To fix this, each system.add message should be in its own try/catch. Or, alternatively, the SimpleWISE constructor should have created the professors list.
c. (10 %) What is the call stack when line 12 in CourseList.java is invoked from line 71 in main in SimpleWISE.java? (Hint: the arguments passed to a method must be evaluated before the message is sent.)
Method

Class
main

SimpleWISE

getPrintableList
SimpleWISE

getPrintableList
WISEList

getHeader

CourseList

d. (10 %) Complete this box-and-arrow picture for the value of the variable system in the main method of SimpleWISE.java
· just after line 56, and

· just after the first command line argument has been processed (show clearly what you have added to the previous answer).

You do not have to remember the exact visual syntax for various kinds of collections, but you do need to show that you understand where all the objects are and what the various fields point to. Use the other side of this paper for your answer.

[image: image1]
2. WISEList.java

a. (4 %) Why must WISEList be declared an abstract class?

WISEList declares the abstract method getHeader. That makes it an abstract class.
b. (4 %) What is the scope of variable s declared on line 22?
Lines 22-27.
c. (4 %) How many tokens are there on line 25?
14. ‘\n’ is one token. I gave part credit for 17.
d. (8 %) In what class would you expect to find the code for the method that runs in response to the add message sent on line 14? How might that method be declared?

It’s in TreeSet or one of its superclasses. The declaration might be
public void add(Object obj)

(in fact it’s in Collection, and returns boolean,
3. (10 %) Find an example of delegation in the SimpleWISE application. Explain what is happening.

There are several examples. We just looked at one: WISEList add (line 12) delegates to TreeSet add (line 14).
SimpleWISE getPrintableList (line 29) delegates to WISEList getPrintableList (line 32)

SimpleWISE get (line 43) delegates to TreeMap get (line 49)
4. Suppose we replace system by System wherever it appears in SimpleWISE.java.
a. (3 %) Would the code still compile?

Yes.
b. (3 %) Would it run?

Yes.
c. (4 %) If it did, would making the change be a good idea? (Reasons, please, not just “yes” or “no”.)
Bad idea! A reader would be very confused, because she would expect System to refer to the System class in the Java library.
5. (20 %) The SimpleWISE class uses a dispatch table. Redesign it using if/else logic. (Aren't you glad I did it this way rather than giving you the if/else and asking for the dispatch table?)
// field declarations

private WISEList courses = new CourseList();
private WISEList students = new StudentList();
private WISEList get(String listName)

 throws WISEException

{

 if(listName.equals(“courses”)) {
 return courses;

 }

 if(listName.equals(“students”)) {

 return students;

 }

 throw new WISEException

 (“No such list: ” + listName);

 return null; // compiler might want this

}

Set

Set

For grader

1a

1b

1c

1d

2a

2b

2c

2d

3

4a

4b

4c

5

Object

“courses”

“students”

key:

Object

value:

Object

“cs683”

Object

value:

key:

Object

TreeMap

TreeMap

allLists:

SimpleWISE

SimpleWISE

system:

