
Discrete Mathematics

Homework 3

Ethan Bolker

November 3, 2014

Due: ???
We’re studying number theory (leading up to cryptography) for the next few weeks. You can

read Unit NT in Bender and Williamson.
This homework contains some programming exercises, some number theory computations and

some proofs. The questions aren’t arranged in any particular order. Don’t just start at the beginning
and do as many as you can – read them all and do the easy ones first.

I may add to this homework from time to time.

Exercises

1. Use the Euclidean algorithm to compute the greatest common divisor d of 59400 and 16200
and find integers x and y such that

59400x + 16200y = d

I recommend that you do this by hand for the logical flow (a calculator is fine for the arith-
metic) before writing the computer programs that follow.

There are many websites that will do the computation for you, and even show you the steps.
If you use one, tell me which one.

2. An interesting class of examples.

(a) Use the Euclidean Algorithm by hand to find an integral solution to the equation

55x + 89y = 1

(b) Your answer to the previous question should suggest a nice identity about the Fibonacci
numbers. State it, then prove it by induction. (Look up “Fibonacci numbers” if you
have to.)

3. Logarithmic time

(a) Prove that if you carry out two steps in the Euclidean algorithm for gcd(a, b) with a > b
the remainder is less than a/2.

(b) Prove that the Euclidean algorithm takes at most 2 log2(a) steps. Show that is at most
five times the number of decimal digits of a.

4. Computer programs

Since CS110 is a prerequisite for this course, you should all be able to write these programs.
But for some of you your programming skills are so rusty that polishing them up so you can
answer this question isn’t worth the time. If that’s the case, just say so and skip it.

You may do this in any language you choose (there are easier ones than Java). You might
even be able to write it in Excel without macros. I’d enjoy seeing that.

(a) Write a program (function, method, procedure) that accepts two integers as input and
produces their gcd as output.

A well written program will do the right thing when the input values are any integers –
positive, negative or zero. The only case that might require special treatment is gcd(0, 0).
There is no right answer then. Just make sure your program doesn’t crash.

1

• If possible, the function that does the computation should not do any printing – it
should return the answer. Then write a program that calls that function and prints
the output.
Printing is the responsibility of the calling program. If possible, the calling program
should get the integer input values from the command line, or from stdin (System.in
in Java). (Of course that’s possible. But if your programming skills are so rusty
that it’s really difficult, don’t spend time on it.)

• It’s really easy to find solutions to this problem on the web. I’d rather you wrote
your own, but won’t insist. If you do get one from the web you must acknowledge
and understand the source and run the program to test it.

• Instrument your program so that when a reporting flag is set it prints the number
of iterations/recursions. Use your instrumentation to check the assertion in Prob-
lem 3b.

• Submit hard copy of your program. If possible, do that in this LATEX document
using the listings package. This is a particularly useful part of the homework for
cs students.

(b) Improve your solution to the previous problem so that your program both finds the gcd
of its input values and also finds the coefficients for a linear integral combination of the
inputs that produces the gcd.

I’d still rather your function do no printing, but that’s harder to arrange now that there
are three integer outputs rather than just one. Do that if you can, but if you can’t don’t
worry.

(c) If you can, write both programs so that they run in constant space. In particular, no
recursive calls, since that would create a logarithmic number of stack frames.

This is easier for the first program than the second.

5. Calculate
54100(mod 101)

using the fast Right-to-left binary method described at http://en.wikipedia.org/

wiki/Modular_exponentiation.

Use a calculator along the way.

If you don’t like the wikipedia discussion you can find lots of others by googling fast modular exponentiation.

This is the computation I botched at the end of lecture.

Note: you should get 1 as the answer – that’s Fermat’s Little Theorem.

6. Large primes.

Note: you can look up the answers to almost all these questions. In fact I’ve asked you to do
that for the last few. I’d rather you didn’t at the beginning – you’ll learn more that way.

(a) Prove

Theorem 1. If 2n − 1 is prime then n is prime.

Hint: If n = ab is not prime then 2n = (2a)b. Then use a finite geometric series.

Primes of this form are called “Mersenne primes”. The first few are 3 = 22−1, 7 = 23−1,
31 = 25 − 1 and 127 = 27 − 1.

(b) State the converse of Theorem 1. Then show that it is false.

Hint. Try to continue the list above in the obvious way.

(c) Look up some information about how the largest known prime has increased over time.
Argue from the data that the logarithm of the logarithm of the largest known prime is
growing. That means the largest known prime is growing much faster than exponentially!

(d) Check Chris Caldwell’s Prime Pages at http://primes.utm.edu/. Read about GIMPS
at http://www.mersenne.org/. Tell me something you found particularly interesting
(not just something from the first page).

7. Show that 2340 ≡ 1 mod 341 even though 341 is not prime. What is the connection between
this result and the converse of Fermat’s Little Theorem?

http://en.wikipedia.org/wiki/Modular_exponentiation
http://en.wikipedia.org/wiki/Modular_exponentiation
http://primes.utm.edu/
http://www.mersenne.org/

8. Eratosthenes’ RSA public key is

n = 10967535067

e = 1051

Archimedes encrypts his message with this key and sends Eratosthenes

C = 1963501580

(a) Break the encryption. (Use any tools you like; tell me how you did it.)

(b) Why is the message appropriate?

(c) What is each of these Greeks famous for?

% Math 320 hw3

%

\documentclass{article}

\pagestyle{empty}

\usepackage[textheight=10in]{geometry}

\usepackage{amsmath}

\usepackage{amsthm}

\usepackage{listings}

\usepackage{graphicx}

\usepackage{verbatim}

\usepackage{hyperref}

\newtheorem{theorem}{Theorem}

\newcommand{\coursehome}

{http://www.cs.umb.edu/~eb/320}

\title{Discrete Mathematics \\

Homework 3

}

\author{Ethan Bolker}

%\date{September 1, 2014}

\newcommand{\ZZ}{\mathbb{Z}}

%create (mod n) macro

\newcommand{\mm}[1]{%

\ensuremath{(\text{mod } #1)}}

\begin{document}

\maketitle

\noindent

Due: ???

We’re studying number theory (leading up to cryptography) for the next

few weeks. You can read Unit NT in Bender and Williamson.

This homework contains some programming exercises, some number

theory computations and some proofs. The questions aren’t arranged in

any particular order. Don’t just start at the beginning and do as many

as you can -- read them all and do the easy ones first.

I may add to this homework from time to time.

\section*{Exercises}

\begin{enumerate}

\item Use the Euclidean algorithm to compute the greatest common

divisor d of

59400 and 16200 and find integers x and y such that

\begin{equation*}

59400x + 16200y = d

\end{equation*}

I recommend that you do this by hand for the logical flow (a

calculator is fine for the arithmetic) before writing the computer

programs that follow.

There are many websites that will do the computation for you, and even

show you the steps. If you use one, tell me which one.

\item An interesting class of examples.

\begin{enumerate}

\item Use the Euclidean Algorithm \emph{by hand} to find an integral

solution to the equation

%

\begin{equation*}

55x + 89y = 1

\end{equation*}

\item

Your answer to the previous question should suggest a nice identity

about the Fibonacci numbers. State it, then prove it by

induction. (Look up ‘‘Fibonacci numbers’’ if you have to.)

\end{enumerate}

\item Logarithmic time

\begin{enumerate}

\item Prove that if you carry out \emph{two steps} in the Euclidean

algorithm for $\text{gcd}(a,b)$ with $a >b$ the remainder is less

than $a/2$.

\item \label{logtime} Prove that the Euclidean algorithm takes at most

$2\log_{2}(a)$ steps. Show that is at most five times the number

of decimal digits of a.

\end{enumerate}

\item Computer programs

Since CS110 is a prerequisite for this course, you should all

be able to write these programs. But for some of you your programming

skills are so rusty that polishing them up so you can answer this

question isn’t worth the time. If that’s the case, just say so and

skip it.

You may do this in any language you choose (there are easier ones than

Java). You might even be able to write it in Excel without macros. I’d

enjoy seeing that.

\begin{enumerate}

\item Write a program (function, method, procedure) that accepts two

integers as input and produces their gcd as output.

A well written program will do the right thing when the input values

are any integers -- positive, negative or zero. The only case that

might require special treatment is $\text{gcd}(0,0)$. There is no right

answer then. Just make sure your program doesn’t crash.

\begin{itemize}

\item

If possible, the function that does the computation should not do any

printing -- it should return the answer. Then write a program that

calls that function and prints the output.

Printing is the responsibility of the calling program. If possible, the

calling program should get the integer input values from the command

line, or from \lstinline!stdin! (System.in in Java). (Of course that’s

possible. But if your programming skills are so rusty that it’s really

difficult, don’t spend time on it.)

\item It’s really easy to find solutions to this problem on the

web. I’d rather you wrote your own, but won’t insist. If you do

get one from the web you must acknowledge and understand the source

and run the program to test it.

\item \emph{Instrument} your program so that when a reporting flag is

set it prints the number of iterations/recursions. Use your

instrumentation to check the assertion in Problem~\ref{logtime}.

\item Submit hard copy of your program. If possible, do that in this

\LaTeX{} document using the \verb!listings! package. This is a

particularly useful part of the homework for cs students.

\end{itemize}

\item

Improve your solution to the previous problem so that your program

both finds the gcd of its input values and also finds the coefficients

for a linear integral combination of the inputs that produces the

gcd.

I’d still rather your function do no printing, but that’s harder to

arrange now that there are three integer outputs rather than just

one. Do that if you can, but if you can’t don’t worry.

\item If you can, write both programs so that they run in constant

space. In particular, no recursive calls, since that would create a

logarithmic number of stack frames.

This is easier for the first program than the second.

\end{enumerate}

\item Calculate

%

\begin{equation*}

54^{100} \mm{101}

\end{equation*}

%

using the fast

\textbf{Right-to-left binary method} described at

\url{http://en.wikipedia.org/wiki/Modular_exponentiation}.

Use a calculator along the way.

If you don’t like the wikipedia discussion you can find lots of others

by googling \verb!fast modular exponentiation!.

This is the computation I botched at the end of lecture.

Note: you should get 1 as the answer -- that’s Fermat’s Little

Theorem.

\item Large primes.

Note: you can look up the answers to almost all these questions. In

fact I’ve asked you to do that for the last few. I’d rather you didn’t

at the beginning -- you’ll learn more that way.

\begin{enumerate}

\item Prove

\begin{theorem}\label{thm:mersenne}

If $2^n -1$ is prime then n is prime.

\end{theorem}

Hint: If $n = ab$ is not prime then $2^n = (2^a)^b$. Then use a finite

geometric series.

Primes of this form are called ‘‘Mersenne primes’’. The first few are

$3 = 2^2-1$, $7=2^3-1$, $31=2^5-1$ and $127=2^7-1$.

\item State the \emph{converse} of

Theorem~\ref{thm:mersenne}. Then show that it is false.

Hint. Try to continue the list above in the obvious way.

\item Look up some information about how the largest known prime has

increased over time. Argue from the data that the logarithm of the

logarithm of the largest known prime is growing. That means the

largest known prime is growing much faster than exponentially!

\item Check Chris Caldwell’s Prime Pages at

\url{http://primes.utm.edu/}. Read about GIMPS at

\url{http://www.mersenne.org/}. Tell me something you found

particularly interesting (not just something from the first page).

\end{enumerate}

\item Show that $2^{340} \equiv 1 \mod{341}$ even though 341 is not

prime. What is the connection between this result and the converse

of Fermat’s Little Theorem?

\item Eratosthenes’ RSA public key is

%

\begin{align*}

n & = 10967535067 \\

e & = 1051

\end{align*}

Archimedes encrypts his message with this key and sends Eratosthenes

%

\begin{equation*}

C = 1963501580

\end{equation*}

\begin{enumerate}

\item Break the encryption. (Use any tools you like; tell me how you

did it.)

\item Why is the message appropriate?

\item What is each of these Greeks famous for?

\end{enumerate}

\end{enumerate}

\newpage

\verbatiminput{\jobname}

\end{document}

