
Discrete Mathematics

Homework 3

Ethan Bolker

November 15, 2014

Due: ???
We’re studying number theory (leading up to cryptography) for the next few weeks. You can

read Unit NT in Bender and Williamson. This homework contains some programming exercises,
some number theory computations and some proofs. The questions aren’t arranged in any particular
order. Don’t just start at the beginning and do as many as you can – read them all and do the
easy ones first. I may add to this homework from time to time.

Exercises

1. Use the Euclidean algorithm to compute the greatest common divisor d of 59400 and 16200
and find integers x and y such that

59400x+ 16200y = d

I recommend that you do this by hand for the logical flow (a calculator is fine for the arith-
metic) before writing the computer programs that follow. There are many websites that will
do the computation for you, and even show you the steps. If you use one, tell me which one.

We wish to find gcd(16200, 59400).

Solution

LATEX note. These are separate equations in the source file. They’d be better formatted in
an align* environment.

59400 = 3(16200) + 10800 next find gcd(10800, 16200)

16200 = 1(10800) + 5400 next find gcd(5400, 10800)

10800 = 2(5400) + 0 gcd(16200, 59400) = 5400

59400x+ 16200y = 5400

5400(11x+ 3y) = 5400

11x+ 3y = 1

By inspection, we can easily determine that (x, y) = (−1, 4) (among other solutions), but let’s
use the algorithm.

11 = 3 · 3 + 2

3 = 2 · 1 + 1

1 = 3− (2) · 1

1 = 3− (11− 3 · 3)

1 = 11(−1) + 3(4)

(x, y) = (−1, 4)

1



2. An interesting class of examples.

(a) Use the Euclidean Algorithm by hand to find an integral solution to the equation

55x+ 89y = 1

You can probably see that 55 and 89 are mutually prime and so gcd(55, 89) = 1, but
let’s run it through the Euclidean Algorithm.

gcd(55, 89) 89 = 1 · 55 + 34

gcd(34, 55) 55 = 1 · 34 + 21

gcd(21, 34) 34 = 1 · 21 + 13

gcd(13, 21) 21 = 1 · 13 + 8

gcd(8, 13) 13 = 1 · 8 + 5

gcd(5, 8) 8 = 1 · 5 + 3

gcd(3, 5) 5 = 1 · 3 + 2

gcd(2, 3) 3 = 1 · 2 + 1

gcd(1, 2) 2 = 1 · 1 + 1

gcd(1, 1) 1 = 1 · 1 + 0

Now we run everything through backwards.

1 = 2− 1 · 1

2− 1(3− 1 · 2)

2 · (2)− 3

2 · (5− 1 · 3)− 3

2 · 5− 3 · (3)

2 · 5− 3(8− 1 · 5)

5 · (5)− 3 · 8

5(13− 1 · 8)− 3 · 8

5 · 13− 8 · (8)

5 · 13− 8(21− 1 · 13)

13 · (13)− 8 · 21

13(34− 1 · 21)− 8 · 21

13 · 34− 21 · (21)

13 · 34− 21(55− 1 · 34)

34 · (34)− 21 · 55

34(89− 1 · 55)− 21 · 55

34 · 89− 55 · 55 = 1

(x, y) = (−55, 34)



(b) Your answer to the previous question should suggest a nice identity about the Fibonacci
numbers. State it, then prove it by induction. (Look up “Fibonacci numbers” if you
have to.)

Solution

What you should have noticed about the previous calculation is that all the quotients
on the way down are just 1 – the smallest they could possibly be. You should also have
recognized the sequence

89, 55, 34, 21, 13, 8, 5, 3, 2, 1

as the Fibonacci numbers – I even gave that away in the hint.

That’s not an accident. The Fibonacci numbers are defined by the recursion relation

F1 = 1

F2 = 2

Fn+1 = Fn + Fn−1 (1)

Since we started with two adjacent Fibonacci numbers, that defining relation implies
that the quotients in the Euclidean algorithm will all be 1 and that the remainders will
count down the Fibonacci numbers to 1, the greatest common divisor.

Equation 1 is not the “nice identity” I asked for – it’s just the definition of the Fibonacci
numbers. What I hoped you’d notice is that the x and y in the identity

−55× 55 + 34× 89 = 1

are themselves both Fibonacci numbers. That suggests

Theorem 1. For each n > 2,

F 2
n − Fn+1Fn−1 = (−1)n (2)

Proof. Suppose we knew that Equation 2 was true for a particular value of n. Then its
truth for n+ 1 follows from the computation

F 2
n+1 − Fn+2Fn = Fn+1(Fn + Fn−1)− (Fn+1 + Fn)Fn

= Fn+1Fn−1 − FnFn

= −(−1)n = (−1)n+1.

Since
22 − 3× 1 = 1,

Equation 2 is true for n = 1. Then by induction it’s true for all n.

If you found the different solution

34× 55− 21× 89 = 1

you’d come up with a slightly different Fibonacci number identity to prove:

Fn−1Fn − Fn−2Fn+1 = ±1.

3. Logarithmic time

(a) Prove that if you carry out two steps in the Euclidean algorithm for gcd(a, b) with a > b
the remainder is less than a/2.

Solution

This argument is Jiho Choi’s. It’s better than the one I knew (which is the one most of
you either found or invented). The algorithm starts with

a = bq + r. (3)

Since a > b, I know q ≥ 1 so a ≥ b+ r. I also know b > r, so

a ≥ b+ r > 2r,

which implies r < a/2. This argument clearly works at each step of the algorithm. Along
the way, the a in Equation 3 is the remainder two before the r in that equation.



(b) Prove that the Euclidean algorithm takes at most 2 log2(a) steps. Show that is at most
five times the number of decimal digits of a.

Solution

After 2 log2(a) steps the remainder could be at most

a

2log2(a)
= 1

so the algorithm will have terminated.

Now 2 log2(a) is (approximately) twice the number of binary digits of a. To get the num-
ber of decimal digits, multiply by log2(10) = 3.32. That says the algorithm terminates
in at most 6.64 times the number of decimal digits of a steps.

I asked you to prove the bound was five times the number of decimal digits. That’s true,
but you need a more sophisticated argument. Lamé first proved it, using the fact that
the worst case for the Euclidean algorithm is the one that starts with adjacent Fibonacci
numbers, making all the quotients 1.

4. Computer programs Since CS110 is a prerequisite for this course, you should all be able to
write these programs. But for some of you your programming skills are so rusty that polishing
them up so you can answer this question isn’t worth the time. If that’s the case, just say so
and skip it. You may do this in any language you choose (there are easier ones than Java).
You might even be able to write it in Excel without macros. I’d enjoy seeing that.

(a) Write a program (function, method, procedure) that accepts two integers as input and
produces their gcd as output. A well written program will do the right thing when the
input values are any integers – positive, negative or zero. The only case that might
require special treatment is gcd(0, 0). There is no right answer then. Just make sure
your program doesn’t crash.

• If possible, the function that does the computation should not do any printing – it
should return the answer. Then write a program that calls that function and prints
the output. Printing is the responsibility of the calling program. If possible, the
calling program should get the integer input values from the command line, or from
stdin (System.in in Java). (Of course that’s possible. But if your programming skills
are so rusty that it’s really difficult, don’t spend time on it.)

• It’s really easy to find solutions to this problem on the web. I’d rather you wrote
your own, but won’t insist. If you do get one from the web you must acknowledge
and understand the source and run the program to test it.

• Instrument your program so that when a reporting flag is set it prints the number
of iterations/recursions. Use your instrumentation to check the assertion in Prob-
lem 3b.

• Submit hard copy of your program. If possible, do that in this LATEX document
using the listings package. This is a particularly useful part of the homework for
cs students.

(b) Improve your solution to the previous problem so that your program both finds the gcd
of its input values and also finds the coefficients for a linear integral combination of the
inputs that produces the gcd. I’d still rather your function do no printing, but that’s
harder to arrange now that there are three integer outputs rather than just one. Do that
if you can, but if you can’t don’t worry.

(c) If you can, write both programs so that they run in constant space. In particular, no
recursive calls, since that would create a logarithmic number of stack frames. This is
easier for the first program than the second.

Solution

Here’s one I wrote years ago in Java

// Implementing the Eucl idean algor i thm .
//
// Ethan Bolker
// October , 2008 f o r cs320
//



// a lgor i thm courte sy o f
// http :// en . w ik iped ia . org / wik i / Extended Eucl idean a lgor i thm
// ( I could have done i t myse l f but t h i s was qu i cke r . )

pub l i c c l a s s Eucl id
{

p r i v a t e i n t m;
p r i v a t e i n t n ;
p r i v a t e i n t a ;
p r i v a t e i n t b ;
p r i v a t e i n t d ;
p r i v a t e i n t s t ep s ;
p r i v a t e double log2bound ;

/∗∗
∗ Eucl id con s t ruc to r .
∗
∗ @param m the f i r s t i n t e g e r
∗ @param m the second i n t e g e r
∗ @exception NumberFormatException i f both m and n are 0
∗/

pub l i c Eucl id ( i n t m, i n t n )
{

i f ( (m==0 && n==0)) {
throw new NumberFormatException ( ) ;

}
log2bound = Math . c e i l (

Math . l og (Math . max(Math . abs (m) , Math . abs (n ) ) ) / 0 . 6 9 3 1 ) ;
t h i s .m = m;
t h i s . n = n ;
s t ep s = 0 ;
// now do the work
d = m;
a = 1 ;
b = 0 ;
i n t nexta = 0 ;
i n t nextb = 1 ;
i n t q ;
i n t r = m;
whi l e (n != 0 ) {

d = r ;
q = m/n ; // i n t e g e r a r i thmet i c t runca t e s
r = m%n ;

m = n ; // changes only l o c a l copy o f m, not t h i s .m
n = r ;

i n t tmp = nexta ;
nexta = a − q∗nexta ;
a = tmp ;

tmp = nextb ;
nextb = b − q∗nextb ;
b = tmp ;

++st ep s ;
}

}

// g e t t e r s f o r a l l numbers o f i n t e r e s t



pub l i c i n t getM ( ) { re turn m; }
pub l i c i n t getN ( ) { re turn n ; }
pub l i c i n t getA ( ) { re turn a ; }
pub l i c i n t getB ( ) { re turn b ; }
pub l i c i n t getD ( ) { re turn d ; }
pub l i c i n t getSteps ( ) { re turn s t ep s ; }

pub l i c S t r ing toS t r i ng ( )
{

re turn ”gcd ( ” + getM ( ) + ” , ” + getN ( ) + ”) = ” + getD ( ) +
” = ” +
getA ( ) + ”∗” + getM ( ) + ” + ” + getB ( ) + ”∗” + getN ( ) +
”\ nsteps : ” + getSteps ( ) +
”\ nlog2 (max(m, n ) ) : ” + log2bound ;

}

pub l i c s t a t i c void main ( St r ing [ ] a rgs )
{

i n t m = 0 ;
i n t n = 0 ;
Eucl id e u c l i d = n u l l ;

// c o l l e c t arguments
t ry {

m = I n t e g e r . pa r s e In t ( args [ 0 ] ) ;
n = I n t e g e r . pa r s e In t ( args [ 1 ] ) ;

}
catch ( Exception e ) {

System . out . p r i n t l n (” usage : java Eucl id m n ” ) ;
System . e x i t ( 0 ) ;

}
// c r e a t e new Eucl id ob j e c t to compute answers
t ry {

e u c l i d = new Eucl id (m, n ) ;
}
catch ( NumberFormatException e ) {

System . out . p r i n t l n (”m and n can ’ t both be 0 ” ) ;
System . e x i t ( 1 ) ;

}
System . out . p r i n t l n ( e u c l i d ) ;

}

}

5. Calculate
54100(mod 101)

using the fast Right-to-left binary method described at http://en.wikipedia.org/

wiki/Modular_exponentiation. Use a calculator along the way. If you don’t like the
wikipedia discussion you can find lots of others by googling fast modular exponentiation.
This is the computation I botched at the end of lecture. Note: you should get 1 as the answer
– that’s Fermat’s Little Theorem.

Solution

None provided here. Just about everyone managed to program themselves to follow the
algorithm and get the right answer.

6. Large primes. Note: you can look up the answers to almost all these questions. In fact I’ve
asked you to do that for the last few. I’d rather you didn’t at the beginning – you’ll learn
more that way.

http://en.wikipedia.org/wiki/Modular_exponentiation
http://en.wikipedia.org/wiki/Modular_exponentiation


(a) Prove

Theorem 2. If 2n − 1 is prime then n is prime.

Hint: If n = ab is not prime then 2n = (2a)b. Then use a finite geometric series.

Solution

Proof. If n is not prime then write n = ab where both a and b are greater than 1. Then

2n − 1 = (2a)b − 1

= (2a − 1)((2a)b−1 + (2a)b−2 + · · ·+ 1).

That says 2n − 1 has a nontrivial factor 2a − 1 so isn’t prime.

Primes of this form are called “Mersenne primes”. The first few are 3 = 22−1, 7 = 23−1,
31 = 25 − 1 and 127 = 27 − 1.

(b) State the converse of Theorem 2. Then show that it is false. Hint. Try to continue the
list above in the obvious way.

Solution The converse of Theorem 2 is

If n is prime then 2n − 1 is prime.

One counterexample is enough to show it’s false.

211 − 1 = 2047 = 23× 89.

(c) Look up some information about how the largest known prime has increased over time.
Argue from the data that the logarithm of the logarithm of the largest known prime is
growing. That means the largest known prime is growing much faster than exponentially!

Solution

This image from https://primes.utm.edu/notes/by_year.html

shows that the number of digits in the largest known prime is growing linearly on a
logarthmic scale. That means the number of digits is growing exponentially, so the
number itself is growing at a doubly exponential rate.

(d) Check Chris Caldwell’s Prime Pages at http://primes.utm.edu/. Read about GIMPS
at http://www.mersenne.org/. Tell me something you found particularly interesting
(not just something from the first page).

Solution None here. I enjoyed finding out what you enjoyed finding out.

https://primes.utm.edu/notes/by_year.html
http://primes.utm.edu/
http://www.mersenne.org/


7. Show that 2340 ≡ 1 mod 341 even though 341 is not prime. What is the connection between
this result and the converse of Fermat’s Little Theorem?

Solution

The computation is easy. The converse of Fermat’s Little Theorem says that if an−1 ≡
1(mod n) then n is prime. Since 341 = 11× 31 this computation provides a counterexample.

There’s a long history to this example and more general ones. Look up “Carmichael numbers”
to find more.

8. Eratosthenes’ RSA public key is

n = 10967535067

e = 1051

Archimedes encrypts his message with this key and sends Eratosthenes

C = 1963501580

(a) Break the encryption. (Use any tools you like; tell me how you did it.)

Solution

I used Wolfram alpha (http://www.wolframalpha.com/) to create the key, so I’ll use it
to break the encryption too.

First I asked it to factor 1963501580 and was told

104723 104729 (2 distinct prime factors)

Then 1051^-1 mod (104722*104728) led to 6188034339.

Finally, 1963501580^6188034339 (mod 10967535067) is 3141592653.

That’s the beginning of the decimal expansion of π!

(b) Why is the message appropriate?

The message is appropriate because Archimedes invented an elegant method for finding
rational approximations to π and used it to determine that

3
1

7
< π < 3

10

71

– a truly remarkable calculation for his time. His friend Eratosthenes measured the
diameter of the Earth. He’d have been interested in the latest news about π. Of course
Archimedes couldn’t have told him this way – no RSA encryption, no Wolfram Alpha,
no decimal representation for numbers!

(c) What is each of these Greeks famous for?

The previous answer describes one accomplishment of each. Eratosthenes also invented
his eponymous 1 sieve for finding primes. Archimedes was famous for lots of other
contributions to mathematics and physics.

1Look up the meaning of this word if you don’t know it.

http://www.wolframalpha.com/
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\documentclass{article}

\pagestyle{empty}

\usepackage[textheight=10in]{geometry}

\usepackage{amsmath}

\usepackage{amsthm}

\usepackage{listings}

\usepackage{graphicx}

\usepackage{verbatim}

\usepackage{hyperref}

\newtheorem{theorem}{Theorem}

\newcommand{\coursehome}

{http://www.cs.umb.edu/~eb/320}
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Homework 3

}
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\newcommand{\ZZ}{\mathbb{Z}}

%create (mod n) macro

\newcommand{\mm}[1]{%

\ensuremath{(\text{mod } #1)}}

\begin{document}

\maketitle

\noindent

Due: ???

We’re studying number theory (leading up to cryptography) for the next

few weeks. You can read Unit NT in Bender and Williamson.

This homework contains some programming exercises, some number

theory computations and some proofs. The questions aren’t arranged in

any particular order. Don’t just start at the beginning and do as many

as you can -- read them all and do the easy ones first.

I may add to this homework from time to time.

\section*{Exercises}

\begin{enumerate}

\item Use the Euclidean algorithm to compute the greatest common

divisor $d$ of

$59400$ and $16200$ and find integers $x$ and $y$ such that

\begin{equation*}

59400x + 16200y = d

\end{equation*}

I recommend that you do this by hand for the logical flow (a

calculator is fine for the arithmetic) before writing the computer

programs that follow.

There are many websites that will do the computation for you, and even

show you the steps. If you use one, tell me which one.

We wish to find $\gcd(16200, 59400)$.

\textbf{Solution}

\emph{\LaTeX{} note.} These are separate equations in the source

file. They’d be better formatted in an \verb!align*! environment.

\[59400=3(16200)+10800\ \quad \text{next find } \gcd(10800,16200)\]

\[16200=1(10800)+5400 \quad \text{next find } \gcd(5400,10800)\]

\[10800=2(5400)+0 \quad \gcd(16200,59400) = 5400\]



\[59400x+16200y = 5400\]

\[5400(11x+3y)=5400\]

\[11x+3y=1\]

By inspection, we can easily determine that $(x,y) = (-1,4)$ (among

other solutions), but let’s use the algorithm.

\[11=3\cdot 3+2\]

\[3=2\cdot 1+1\]

\[1=3-(2)\cdot 1\]

\[1=3-(11-3 \cdot 3)\]

\[1=11(-1)+3(4)\]

\[(x,y)=(-1,4)\]

\item An interesting class of examples.

\begin{enumerate}

\item Use the Euclidean Algorithm \emph{by hand} to find an integral

solution to the equation

%

\begin{equation*}

55x + 89y = 1

\end{equation*}

You can probably see that 55 and 89 are mutually prime and so

$\gcd(55,89) = 1$, but let’s run it through the Euclidean Algorithm.

\[\gcd(55,89)\quad 89=1\cdot 55+34\]

\[\gcd(34,55)\quad 55=1\cdot 34+21\]

\[\gcd(21,34)\quad 34=1\cdot 21+13\]

\[\gcd(13,21)\quad 21=1\cdot 13+8\]

\[\gcd(8,13)\quad 13=1\cdot 8+5\]

\[\gcd(5,8)\quad 8=1\cdot 5+3\]

\[\gcd(3,5)\quad 5=1\cdot 3+2\]

\[\gcd(2,3)\quad 3=1\cdot 2+1\]

\[\gcd(1,2)\quad 2=1\cdot 1+1\]

\[\gcd(1,1)\quad 1=1\cdot 1+0\]

Now we run everything through backwards.

\[1=2-1 \cdot 1\]

\[2-1(3-1 \cdot 2)\]

\[2\cdot (2)-3\]

\[2\cdot (5-1 \cdot 3)-3\]

\[2\cdot 5-3 \cdot (3)\]

\[2\cdot 5-3(8-1\cdot 5)\]

\[5\cdot (5)-3 \cdot 8\]

\[5(13-1\cdot 8)-3\cdot 8\]

\[5\cdot 13 - 8\cdot (8)\]

\[5\cdot 13-8(21-1\cdot 13)\]

\[13\cdot (13)-8\cdot 21\]

\[13(34-1\cdot 21)-8\cdot 21\]

\[13\cdot 34-21\cdot (21)\]

\[13\cdot 34-21(55-1\cdot 34)\]

\[34\cdot (34)- 21\cdot 55\]

\[34(89-1\cdot 55)-21\cdot 55\]

\[34\cdot 89-55\cdot 55=1\]

\[(x,y) = (-55,34)\]



\item

Your answer to the previous question should suggest a nice identity

about the Fibonacci numbers. State it, then prove it by

induction. (Look up ‘‘Fibonacci numbers’’ if you have to.)

\textbf{Solution}

What you should have \emph{noticed} about the previous calculation is

that all the quotients on the way down are just $1$ -- the smallest

they could possibly be. You should also have \emph{recognized} the

sequence

\begin{equation*}

89, 55, 34, 21, 13, 8, 5, 3, 2, 1

\end{equation*}

as the \emph{Fibonacci numbers} -- I even gave that away in the hint.

That’s not an accident. The Fibonacci numbers are defined by the

recursion relation

%

\begin{align}\label{eq:fib}

F_1 & = 1 \notag \\

F_2 & = 2 \notag \\

F_{n+1} & = F_{n} + F_{n-1}

\end{align}

Since we started with two adjacent Fibonacci numbers, that defining

relation implies that the quotients in the Euclidean algorithm will

all be $1$ and that the remainders will count down the Fibonacci

numbers to $1$, the greatest common divisor.

Equation~\ref{eq:fib} is \emph{not} the ‘‘nice identity’’ I asked for

-- it’s just the definition of the Fibonacci numbers. What I hoped

you’d notice is that the $x$ and $y$ in the identity

%

\[

-55 \times 55 + 34 \times 89 = 1

\]

%

are themselves both Fibonacci numbers. That suggests

%

\begin{theorem}

For each $n > 2$,

\begin{equation}\label{eq:fibid}

F_n^2 - F_{n+1}F_{n -1} = (-1)^n

\end{equation}

\end{theorem}

\begin{proof}

Suppose we knew that

Equation~\ref{eq:fibid} was true for a particular value of $n$. Then its

truth for $n+1$ follows from the computation

%

\begin{align*}

F_{n+1}^2 - F_{n+2}F_{n} & =

F_{n+1}(F_n + F_{n-1}) - (F_{n+1} + F_n)F_n \\

& = F_{n+1}F_{n-1} - F_nF_n \\

& = -(-1)^n = (-1)^{n+1}.

\end{align*}

Since



\begin{equation*}

2^2 - 3 \times 1 = 1,

\end{equation*}

%

Equation~\ref{eq:fibid} is true for $n=1$. Then by induction it’s true

for all $n$.

\end{proof}

If you found the different solution

\begin{equation*}

34 \times 55 - 21 \times 89 =1

\end{equation*}

you’d come up with a slightly different Fibonacci number identity to

prove:

%

\begin{equation*}

F_{n-1}F_{n} - F_{n-2}F_{n+1} = \pm 1.

\end{equation*}

\end{enumerate}

\item Logarithmic time

\begin{enumerate}

\item Prove that if you carry out \emph{two steps} in the Euclidean

algorithm for $\text{gcd}(a,b)$ with $a >b$ the remainder is less

than $a/2$.

\textbf{Solution}

This argument is Jiho Choi’s. It’s better than the one I knew (which

is the one most of you either found or invented). The algorithm starts with

\begin{equation}\label{eq:euclid}

a = bq + r .

\end{equation}

%

Since $a > b$, I know $q \ge 1$ so $a \ge b+r$. I also know $b > r$,

so

\begin{equation*}

a \ge b + r > 2r ,

\end{equation*}

which implies $r < a/2$.

%

This argument clearly works at each step of the algorithm. Along the

way, the $a$ in Equation~\ref{eq:euclid} is the remainder two before

the $r$ in that equation.

\item \label{logtime} Prove that the Euclidean algorithm takes at most

$2\log_{2}(a)$ steps. Show that is at most five times the number

of decimal digits of $a$.

\textbf{Solution}

After $2\log_{2}(a)$ steps the remainder could be at most

\begin{equation*}

\frac{a}{2^{\log_{2}(a)}} =1

\end{equation*}

so the algorithm will have terminated.

Now $2\log_{2}(a)$ is (approximately) twice the number of binary digits of

$a$. To get the number of decimal digits, multiply by



$\log_{2}(10) = 3.32$. That says the algorithm terminates in at most

6.64 times the number of decimal digits of $a$ steps.

I asked you to prove the bound was five times the number of decimal

digits. That’s true, but you need a more sophisticated

argument. Lam\’e first proved it, using the fact that the worst case

for the Euclidean algorithm is the one that starts with adjacent

Fibonacci numbers, making all the quotients $1$.

\end{enumerate}

\item Computer programs

Since CS110 is a prerequisite for this course, you should all

be able to write these programs. But for some of you your programming

skills are so rusty that polishing them up so you can answer this

question isn’t worth the time. If that’s the case, just say so and

skip it.

You may do this in any language you choose (there are easier ones than

Java). You might even be able to write it in Excel without macros. I’d

enjoy seeing that.

\begin{enumerate}

\item Write a program (function, method, procedure) that accepts two

integers as input and produces their gcd as output.

A well written program will do the right thing when the input values

are any integers -- positive, negative or zero. The only case that

might require special treatment is $\text{gcd}(0,0)$. There is no right

answer then. Just make sure your program doesn’t crash.

\begin{itemize}

\item

If possible, the function that does the computation should not do any

printing -- it should return the answer. Then write a program that

calls that function and prints the output.

Printing is the responsibility of the calling program. If possible, the

calling program should get the integer input values from the command

line, or from \lstinline!stdin! (System.in in Java). (Of course that’s

possible. But if your programming skills are so rusty that it’s really

difficult, don’t spend time on it.)

\item It’s really easy to find solutions to this problem on the

web. I’d rather you wrote your own, but won’t insist. If you do

get one from the web you must acknowledge and understand the source

and run the program to test it.

\item \emph{Instrument} your program so that when a reporting flag is

set it prints the number of iterations/recursions. Use your

instrumentation to check the assertion in Problem~\ref{logtime}.

\item Submit hard copy of your program. If possible, do that in this

\LaTeX{} document using the \verb!listings! package. This is a

particularly useful part of the homework for cs students.

\end{itemize}

\item

Improve your solution to the previous problem so that your program

both finds the gcd of its input values and also finds the coefficients

for a linear integral combination of the inputs that produces the

gcd.

I’d still rather your function do no printing, but that’s harder to

arrange now that there are three integer outputs rather than just

one. Do that if you can, but if you can’t don’t worry.

\item If you can, write both programs so that they run in constant

space. In particular, no recursive calls, since that would create a

logarithmic number of stack frames.

This is easier for the first program than the second.

\end{enumerate}



\textbf{Solution}

Here’s one I wrote years ago in Java

\begin{lstlisting}

// Implementing the Euclidean algorithm.

//

// Ethan Bolker

// October, 2008 for cs320

//

// algorithm courtesy of

// http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

// (I could have done it myself but this was quicker.)

public class Euclid

{

private int m;

private int n;

private int a;

private int b;

private int d;

private int steps;

private double log2bound;

/**

* Euclid constructor.

*

* @param m the first integer

* @param m the second integer

* @exception NumberFormatException if both m and n are 0

*/

public Euclid( int m, int n )

{

if ((m==0 && n==0)) {

throw new NumberFormatException();

}

log2bound = Math.ceil(

Math.log(Math.max(Math.abs(m), Math.abs(n)))/0.6931);

this.m = m;

this.n = n;

steps = 0;

// now do the work

d = m;

a = 1;

b = 0;

int nexta = 0;

int nextb = 1;

int q;

int r = m;

while (n != 0 ) {

d = r;

q = m/n; // integer arithmetic truncates

r = m%n;

m = n; // changes only local copy of m, not this.m

n = r;

int tmp = nexta;

nexta = a - q*nexta;



a = tmp;

tmp = nextb;

nextb = b - q*nextb;

b = tmp;

++steps;

}

}

// getters for all numbers of interest

public int getM() { return m; }

public int getN() { return n; }

public int getA() { return a; }

public int getB() { return b; }

public int getD() { return d; }

public int getSteps() { return steps; }

public String toString()

{

return "gcd( " + getM() + ", " + getN() + ") = " + getD() +

" = " +

getA() + "*" + getM() + " + " + getB() + "*" + getN() +

"\nsteps: " + getSteps() +

"\nlog2(max(m,n)): " + log2bound;

}

public static void main( String[] args )

{

int m = 0;

int n = 0;

Euclid euclid = null;

// collect arguments

try {

m = Integer.parseInt(args[0]);

n = Integer.parseInt(args[1]);

}

catch( Exception e ) {

System.out.println("usage: java Euclid m n");

System.exit(0);

}

// create new Euclid object to compute answers

try {

euclid = new Euclid(m,n);

}

catch( NumberFormatException e ) {

System.out.println("m and n can’t both be 0");

System.exit(1);

}

System.out.println(euclid);

}

}

\end{lstlisting}

\item Calculate

%

\begin{equation*}

54^{100} \mm{101}



\end{equation*}

%

using the fast

\textbf{Right-to-left binary method} described at

\url{http://en.wikipedia.org/wiki/Modular_exponentiation}.

Use a calculator along the way.

If you don’t like the wikipedia discussion you can find lots of others

by googling \verb!fast modular exponentiation!.

This is the computation I botched at the end of lecture.

Note: you should get $1$ as the answer -- that’s Fermat’s Little

Theorem.

\textbf{Solution}

None provided here. Just about everyone managed to program themselves

to follow the algorithm and get the right answer.

\item Large primes.

Note: you can look up the answers to almost all these questions. In

fact I’ve asked you to do that for the last few. I’d rather you didn’t

at the beginning -- you’ll learn more that way.

\begin{enumerate}

\item Prove

\begin{theorem}\label{thm:mersenne}

If $2^n -1$ is prime then $n$ is prime.

\end{theorem}

Hint: If $n = ab$ is not prime then $2^n = (2^a)^b$. Then use a finite

geometric series.

\textbf{Solution}

\begin{proof}

If $n$ is not prime then write $n = ab$ where both $a$ and $b$ are

greater than $1$. Then

%

\begin{align*}

2^n -1 & = (2^a)^b -1 \\

& = (2^a -1)((2^a)^{b-1} + (2^a)^{b-2} + \cdots + 1) .

\end{align*}

That says $2^n - 1$ has a nontrivial factor $2^a -1$ so isn’t prime.

\end{proof}

Primes of this form are called ‘‘Mersenne primes’’. The first few are

$3 = 2^2-1$, $7=2^3-1$, $31=2^5-1$ and $127=2^7-1$.

\item State the \emph{converse} of

Theorem~\ref{thm:mersenne}. Then show that it is false.

Hint. Try to continue the list above in the obvious way.

\textbf{Solution} The converse of

Theorem~\ref{thm:mersenne} is

\begin{center}

If $n$ is prime then $2^n -1$ is prime.

\end{center}

One counterexample is enough to show it’s false.

\begin{equation*}



2^{11} - 1 = 2047 = 23 \times 89.

\end{equation*}

\item Look up some information about how the largest known prime has

increased over time. Argue from the data that the logarithm of the

logarithm of the largest known prime is growing. That means the

largest known prime is growing much faster than exponentially!

\textbf{Solution}

This image from \url{https://primes.utm.edu/notes/by_year.html}

\begin{center}

\includegraphics[width=3in]{largestprime}

\end{center}

shows that the number of digits in the largest known prime is growing

linearly on a logarthmic scale. That means the number of digits is

growing exponentially, so the number itself is growing at a doubly

exponential rate.

\item Check Chris Caldwell’s Prime Pages at

\url{http://primes.utm.edu/}. Read about GIMPS at

\url{http://www.mersenne.org/}. Tell me something you found

particularly interesting (not just something from the first page).

\textbf{Solution} None here. I enjoyed finding out what you enjoyed

finding out.

\end{enumerate}

\item Show that $2^{340} \equiv 1 \mod{341}$ even though $341$ is not

prime. What is the connection between this result and the converse

of Fermat’s Little Theorem?

\textbf{Solution}

The computation is easy. The converse of Fermat’s Little Theorem says

that if $a^{n-1} \equiv 1 \mm{n}$ then $n$ is prime. Since $341 = 11

\times 31$ this computation provides a counterexample.

There’s a long history to this example and more general ones. Look up

‘‘Carmichael numbers’’ to find more.

\item Eratosthenes’ RSA public key is

%

\begin{align*}

n & = 10967535067 \\

e & = 1051

\end{align*}

Archimedes encrypts his message with this key and sends Eratosthenes

%

\begin{equation*}

C = 1963501580

\end{equation*}

\begin{enumerate}

\item Break the encryption. (Use any tools you like; tell me how you

did it.)

\textbf{Solution}



I used Wolfram alpha (\url{http://www.wolframalpha.com/}) to create

the key, so I’ll use it to break the encryption too.

First I asked it to \verb!factor 1963501580! and was told

\verb!104723 104729 (2 distinct prime factors)!

Then \verb!1051^-1 mod (104722*104728)! led to

\verb!6188034339!.

Finally, \verb!1963501580^6188034339 (mod 10967535067)! is

\verb!3141592653!.

That’s the beginning of the decimal expansion of $\pi$!

\item Why is the message appropriate?

The message is appropriate because Archimedes invented an elegant

method for finding rational approximations to $\pi$ and used it to

determine that

%

\begin{equation*}

3\frac{1}{7} < \pi < 3\frac{10}{71}

\end{equation*}

%

-- a truly remarkable calculation for his time. His friend

Eratosthenes measured the diameter of the Earth. He’d have been

interested in the latest news about $\pi$. Of course Archimedes

couldn’t have told him this way -- no RSA encryption, no Wolfram

Alpha, no decimal representation for numbers!

\item What is each of these Greeks famous for?

The previous answer describes one accomplishment of each. Eratosthenes

also invented his eponymous

\footnote{Look up the meaning of this word if you don’t know it.}

sieve for finding primes. Archimedes was famous for lots of other

contributions to mathematics and physics.

\end{enumerate}

\end{enumerate}
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