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Summary We explore weighing problems when you may use at most one of each of an increasing sequence
of weights but may put some on the balance along with the unknown object. Our solutions depend on analyzing
arithmetic when you expand integers in the mixed base defined by the weights. We begin with elementary school
exercises and end with conjectures.

A group of fourth graders at the Heath School in Brookline, MA, works to discover
the optimal sequence of weights they’d need to balance an object of unknown integral
weight. They quickly discover the greedy algorithm for extending the sequence (1, 2),
realize that the next weight is one more than the sum of the ones found so far, and
easily guess that it is double the last one found. Second graders can guess this too.
Fourth graders can understand that knowing how to place the weights is equivalent to
expanding integers in base 2.

Suppose you allow weights on either side of the balance. Then the optimal sequence
begins (1, 3) because 2 = 3− 1, so you can weigh a 2 pound object by putting it on
the balance along with the 1 weight opposite the 3. The largest integer you can weigh
is 4 = 1 + 3. The next weight might be 6 instead of 5 = 4 + 1 since 5 = 6 − 1.
With time and patience the fourth graders discover that 9 and then 27 are the right
next weights. Since 1 + 3 + 9 + 27 = 40 = (34 − 1)/2 they have solved the weight
problem of Bachet de Méziriac:

A merchant has a forty-pound measuring weight that broke into four pieces
as the result of a fall. When the pieces were subsequently weighed, it was found
that the weight of each piece was a whole number of pounds and that the four
pieces could be used to weigh every integral weight between 1 and 40 pounds.

What were the weights of the pieces? [1]

That problem reappears often. Figure 1 is from an early edition of Hugo Steinhaus’s
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Mathematical Snapshots [10]. It was a Car Talk puzzler in 2011, reposted online in
2017 [6] [7]. It’s a frequent visitor on StackExchange and other web question and
answer sites [3] [9] [11]. These references show that the following theorem isn’t new.
This proof is implicit in the literature too.

Theorem 1. When you may place weights on either side of the balance you can weigh
any integer uniquely using weights (3k) = (1, 3, 9, . . .) .

Proof. To weigh n, write its base 3 representation. Then rewrite that representation
using the digits −1, 0, 1 instead of the usual 0, 1, 2 by repeating one of the following
transformations as long as that’s possible:

• Replace an instance of x2y with (x+ 1)(−1)y.
• Replace an instance of x3y with (x+ 1)0y.

Each of these replacements leaves the value of n invariant, the first because 2 ×
3k−1 = 3k − 3k−1, the second because 3× 3k−1 = 3k.

The algorithm must terminate since the sum of the digits is strictly decreasing. The
result tells you which weights to put on the balance along with the unknown n.

To convert back to the the usual base 3 representation

• Replace an instance of x(−1)y with (x− 1)2y.
• Replace an instance of x(−2)y with (x− 1)1y.

These changes do not change n, increase the digit sum, and end when the only
digits are 0, 1 and 2. The existence of this inverse map shows that the balanced ternary
representation and hence the disposition of weights is unique.

Using digits 0,±1 to represent integers in base 3 is called balanced ternary nota-
tion. It has a long history [2][5].

We posed a generalization. What if you are allowed at most one weight along with
the unknown object? We didn’t know the answer when we asked — intentionally,
so kids could know that mathematicians regularly invented and attacked new ques-
tions that didn’t yet have answers. It’s easy to see that the sequence of weights begins
(1, 3, 8); to weigh 5 you write 5 = 8− 3 rather than 5 = 9− 3− 1 since the latter
requires two negatives. The kids ran out of time before they could get any further. But
we remained intrigued.

The start looks like every other Fibonacci number. We fantasized that the sequence
might continue with 21. It doesn’t: that would require two negative weights for 15 =
21− 8 + 3− 1. After correcting several arithmetic errors we found that the maximum
next weight is 18. Watch the mystery weight sequenceX = (1, 3, 8, 18, . . .) reappear
later in this paper.

We hoped the Fibonacci pattern could be rescued by changing the problem — math-
ematicians do that all the time. Perhaps “using at most one negative weight” is the
wrong hypothesis. So we tried “using at most half negative weights”. Sadly, the weight
sequence then starts (1, 3, 8, 24, . . .). The good news is that asking the more general
questions led to some nice mathematics.

A framework for weighing problems

We’ll start by restricting ourselves to weights on just one side of the balance.
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Let W = (w0 < w1 < w2 < · · · ) be an increasing sequence of positive integers;
we call such a sequence a weight sequence, and refer to the terms wk as weights. We
want to study weighing problems that allow for at most one weight of each kind. Since
the theorems and proofs work just as well for a while with a bounded number c ≥ 1
of each weight we’ll state them in that generality.

Definition 1. The weight sequence W is c-complete if every positive integer n is a
sum of weights in W using each weight at most c times.

Write sk = w0 + w1 + · · ·+ wk−1 for the sum of the first k weights. Set s0 = 0.

Theorem 2. The weight sequence W is c-complete if and only if

wk ≤ 1 + csk (1)

for each k ≥ 0.

Proof. The largest n you can weigh with the first k weights is csk. If the next weight
is greater than 1 + csk then you can’t weigh 1 + csk.

To prove the converse, suppose inequality (1) is true for all k.
For each nonnegative integer n let r(n) be the base c + 1 representation of n: a

string dkdk−1 . . . d0 of digits between 0 and c. Then let f(n) be the value of r(n) in
base W :

f(n) = dkwk + dk−1wk−1 + · · ·+ d0w0.

Since r((c + 1)k) is the string with a 1 followed by k 0’s, f((c + 1)k) = wk. In
particular that says f is unbounded.

If r(n) ends in anything other than c then r(n+ 1) agrees with r(n) except at the
units digit, which increases by 1, so f(n+ 1) = f(n) + 1.

If r(n) ends in a string of c’s of length j > 0 then calculating r(n+ 1) from r(n)
involves a carry to place j + 1, essentially replacing csj by wj . Then inequality (1)
implies f(n+ 1) = f(n) + (wj − csj) ≤ f(n) + 1.

Thus f is an unbounded function with f(1) = w0 = 1 and at each step f either
increases by 1, or is unchanged, or decreases. Hence f is surjective.

The proof of Theorem 2 can be easily tweaked and generalized to prove slightly
stronger results. Rewriting the argument in each of the following corollaries would
obscure the bones of the argument, so we will leave some of the tweaks to the reader.

Corollary 1. A weight sequence W is c-complete if and only if for every index k ≥ 0,
every positive integer n ≤ csk+1 can be written as a sum of weights using only the
weights w0, w1, . . . , wk at most c times each.

Proof. Note that r((c+ 1)k − 1) = ccc . . . cc, hence f(((c+ 1)k − 1)) = csk.

Corollary 2. You need not allow the same maximum number of each kind of weight.
The theorem has an obvious generalization when allowing ck instances of weight k.
The proof works with a mixed base representation using digits 0, 1, . . . , ck in column
k.

Corollary 3. The weight sequence W is c-complete if wk+1/wk ≤ c+ 1 for all k.

Proof. Clearly w0 ≤ 1 + cs0. Then induction works:

wk+1 ≤ (c+ 1)wk ≤ cwk + wk ≤ cwk + 1 + csk = 1 + csk+1.
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The condition wk+1/wk ≤ c+ 1 is sufficient, but not necessary. For example, the
sequence (1, 2, 3, 7, 14, 28, . . .) is 1-complete even though 7/3 > 2.

Corollary 4. As long as the weak inequality in (1) is an equality (which may be true
for all k) the weight sequence is the powers of c+ 1 and each n has a unique repre-
sentation corresponding to its base c+ 1 expansion. Once there is a strict inequality
there is occasional nonuniqueness.

Using weights on both sides of the balance

In Theorem 1 we explored the relation between ternary and balanced ternary represen-
tations of integers: the digit sets [0, 2] = {0, 1, 2} and [−1, 1] = {−1, 0, 1} are es-
sentially equivalent. That kind of equivalence persists when we allow multiple copies
of each weight.

Lemma 1. Suppose the weight sequence W represents n using v(d) instances of
coefficient digit d, for d in the digit set [0, . . . , 2c]. Suppose further that n < csk.
Then W represents csk − n using digit c − d in the digit set [−c, . . . , c] just v(d)
times. Conversely, that assertion is true when you swap the roles of the two digit sets.

Proof. Use the known representation of n to represent the complement:

csk − n = cw0 +cw1 · · · +cwk

−d0w0 −d1w1 · · · −dkwk

= (c− d0)w0 +(c− d1)w1 · · · +(c− dk)wk.

The argument works the other way since the function x 7→ a− x is its own inverse;
we use it with a = csk for n and a = c for the digit sets.

For example, s3 = 30 for the mystery weight sequence X = (1, 3, 8, 18, . . .). The
pair (6, 24) exhibits these three sets of paired representations:

6 = 8− 3 + 1 = 18− 8− 3− 1 = 2× 3

24 = 18 + 2× 3 = 2× 8 + 2× 3 + 2× 1 = 18 + 8− 3 + 1

This lemma provides an alternative algorithm for calculating the balanced ternary
representation of n when you can use as many negative weights as you wish. For the
powers of 3, sk = (3k − 1)/2. Find the smallest k such that sk > n, find the ordinary
base 3 representation of sk − n using k + 1 digits and swap: interchange 0 and 1 and
change 2 to −1.

Definition 2. The weight sequence W is c-balanced if for every index k ≥ 0, every
positive integer n ≤ csk+1 can be written as a sum

n = dkwk + · · ·+ d0w0

with digits di in [−c, c].
We first proved the next theorem by modifying the proof of Theorem 2. Then we

discovered Lemma 1, which makes for a much cleaner argument.

Theorem 3. A weight sequence is c-balanced if and only if it is 2c-complete.

Proof. Let W be a weight sequence. Suppose n > 0. Choose k large enough so that
csk > n. If W is 2c-complete then m = csk − n is a sum of weights using each at
most 2c times. Then Lemma 1 implies n is a sum of weights using digits from [−c, c].
Conversely, if W is c-balanced, the lemma shows how to use the representation of m
with those digits to represent n using [0, 2c].
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Restricting the number of negative weights

Now we’re ready to return to open problems like the one we asked fourth graders.
Since we have just one weight of each kind to play with we’ll restrict our discussion
to the special case c = 1. Then we know that powers of 2 form the 1-complete weight
sequence that leads to unique solutions while the sequence of powers of 3 does the
same for the 2-complete, hence 1-balanced sequences.

We will continue to call weights that share the balance pan with the unknown “nega-
tive weights”. Theorem 3 says we can isolate the object and use some “double weights”
on the other pan instead when that is more convenient

We want to allow the number of negative/double weights to depend on the number
of weights we have available at any moment.

Definition 3. A bounding sequence is a nondecreasing sequence of non-negative
integers that increases by at most 1 at each step. Formally, it’s a sequence µ =
(µ0, µ1, µ2 · · · ) where µ0 = 0 and µk+1 − µk ∈ {0, 1} for all k > 0.

A bounding sequence tells us that when using k weights we may put at most µk

of them on the balance along with the unknown. The bounding sequence µmin =
(0, 0, . . .) allows no negative weights; the bounding sequence µmax = (0, 1, 2, . . . )
allows as many as you wish. The bounding sequence (0, 1, 1, . . .) allows just one neg-
ative weight.

Definition 4. Let µ be a bounding sequence. A weight sequence W is µ-balanced if
every n between 1 and wk can be weighed using at most µk negative weights, that is,
can be represented as

n = dkwk + dk−1wk−1 + · · ·+ d1w1 + d0w0, (2)

with digits in [−1, 1] at most µk of which are −1.

Definition 5. Let µ be a bounding sequence. A weight sequence W is µ-complete if
every n between 1 and wk − 1 can be weighed using at most µk double weights, that
is, can be represented as

n = bk−1wk−1 + · · ·+ b1w1 + b0w0,

with digits in [0, 2] at most µk of which are 2.

Lemma 2. A weight sequence W is µ-balanced if every n between 1 and sk+1 can be
weighed using at most µk negative weights, that is, can be represented as

n = dkwk + dk−1wk−1 + · · ·+ d1w1 + d0w0, (3)

with digits in [−1, 1] at most µk of which are −1.

Proof. The only difference between this lemma and the definition of µ-balanced is the
change from n ≤ wk − 1 to n ≤ sk+1 − 1.

One implication is clear, since wk < sk+1 for all k.
If wk ≤ n < sk then n = wk +m with m ≤ sk−1. Then by induction m is a sum

of weights at most µk of which are negative; hence that’s true for n as well.

Theorem 4. Let µ be a bounding sequence. A weight sequence W is µ-balanced if
and only if it is µ-complete.
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Proof. Suppose W is µ-balanced and n < wk. Then 1 ≤ n < sk+1, so sk+1 − n can
be represented using at most µk negative weights. Then Lemma 1 shows n can be
represented using at most µk double weights.

Conversely, supposeW is µ-complete and n ≤ sk+1. If n = sj for some j ≤ k+ 1
then n is a sum of weights none of which is negative. If not, let j be the unique index
such that sj < n < sj+1. Then apply Lemma 1 to the pair (n, sj+1 − n).

Optimal weight sequences

Definition 6. Let µ be a bounding sequence. A weight sequence W is µ-optimal if
for every index k ≥ 0, the value of wk is the largest possible among µ-balanced/µ-
complete weight sequences.

Theorem 5. For every µ there is a unique µ-optimal weight sequenceW , constructed
recursively as follows:

• w0 = 1;
• Suppose w0, w1, . . . , wk−1 known. Then wk is the smallest integer that can’t be

represented as a sum of smaller weights, allowing at most µk double weights.

Then

2wk ≤ wk+1 ≤ 3wk

with equality on the left if and only if µk = 0 and equality on the right if and only if
µk+1 = 1 + µk.

Proof. With only the first term of the sequence, all we can represent is w0, so we must
start with w0 = 1. Suppose that we have determined optimal values for w0, w1, w2,
. . . , wk and want to find the optimal wk+1.

Since W is µ-complete, all integers from 0 to wk − 1 can be represented using
weights up to wk−1 with the number of double weights bounded by µ. Then simply
adding wk to each representation weighs everything up to 2wk − 1 without using an-
other double weight. Therefore wk+1 ≥ 2wk. That inequality can be strict only if we
can weigh something larger. That’s only possible if some earlier representation has a
double weight we could make single so as to allow doubling the new next weight. That
would require µk > 0.

If µk+1 = 1 + µk then we may use another double weight. By adding 2wk to the
representation using weights up to wk−1 we can represent everything up to 3wk − 1,
so 3wk ≤ wk+1.

Suppose we were able to represent 3wk as well:

3wk = dkwk + dk−1wk−1 + · · ·+ d1w1 + d0w0.

Since W is optimal, wk > sk, hence 3wk > wk + 2sk. Therefore dk = 2 and then
wk = dk−1wk−1 + · · ·+ d0w0, using at most µk+1 − 1 = µk double weights. That
contradicts the optimality of wk.

Therefore 3wk is the smallest positive integer that cannot be represented by W
using at most µk double weights, hence wk+1 = 3wk.

The optimal weight sequence for µmin (no negative/double weights) is the powers
of 2. The optimal sequence for µmax (as many negative/double weights as you wish) is
the powers of 3. The problem we set fourth graders was to find the µ-optimal weight
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sequence for µ = (0, 1, 1, 1, . . .): one negative/double weight allowed. That is the
mystery sequence X = (1, 3, 8, 18, . . .). We wrote a Python program to explore fur-
ther. It told us the next two weights are 41 and 84. We found no pattern in X but did
find X in OEIS at A066425 [8]:

W = (1, 3, 8, 18, 41, 84, 181, 364, 751, 1512, 3037, 6107, 12216, 24547, . . .)

The next theorem shows that the OEIS definition forW is equivalent to ours forX .

Theorem 6. For every integer k ≥ 0, let wk be the smallest positive integer M such
that M minus any sum of distinct earlier terms is not already in the sequence. Then
wk = xk for all k.

Proof. Use strong induction on k. The assertion is true for w0 = x0 = 1. Suppose it
true up to k − 1.

Call the weights up to k − 1 “small”.
Consider m = wk − 1. The minimality of wk implies there is some set S of small

weights and a small weight wj = xj such that

m− ΣS = wj

where ΣS is the sum of the weights in S. Then

m = wj + ΣS

represents m as a sum of small weights with at most one double weight. Therefore
m = wk − 1 < xk so wk ≤ xk.

Consider m = xk − 1. Then the optimality of xk in X implies some set S of small
weights represents m using at most one of them twice. If there is such a one, let it be
wj , else pick any element wj ∈ S. Remove (one copy of) wj from S (which may then
be empty, but that’s OK). Then

m = wj + ΣS.

Then

m− ΣS = wj

so the minimality of wk implies m = xk − 1 < wk so xk ≤ wk.

The OEIS entry asks for an efficient algorithm to calculate X . We haven’t found
one. Our Python program is essentially brute force, speeded up some by the restrictions
proved in Theorem 5.

Efficient algorithms are an unsolved problem. We don’t have one to find any of the
optimal sequences other than the powers of 2 and the powers of 3. Moreover, given an
optimal sequence we don’t have a good algorithm that tells us how to weigh things.
With Lemma 1 we can switch back and forth between negative and double weights,
but we don’t know how to get started with either.

For the powers of 3 the greedy algorithm finds the ordinary base 3 representation:
subtract as many as possible of the largest weight you can (1 or 2 of them), then
represent the difference with smaller weights.

Since wk+1 > 2wk for every optimal weight sequence other than the powers of 2,
the greedy algorithm will always call for 1 or 2 of the largest possible weight. But
it may not succeed when 2 will fit. It fails to discover how X represents 38 since
38 = 2× 18 + 2× 1 uses two double weights. The correct representation is

38 = 18 + 2× 8 + 3 + 1.



Mathematical Assoc. of America Mathematics Magazine 94:5 October 29, 2021 4:37 p.m. weighingfinal.tex page 8

8 MATHEMATICS MAGAZINE

We hoped that the greedy algorithm would work at least for wk − 1, the last n you
can represent without needing a new weight. But no: it fails for X at

w11 − 1 = 6106 = 3037 + 2× 1512 + 41 + 3 + 1

even though 2× 3037 < 6107.

Conjecture 1. For every optimal weight sequence other than the powers of 2 and pow-
ers of 3, using the greedy algorithm to find representations will always fail somewhere.
The first failure will be for an n for which the largest possible weight fits twice.

We can modify the greedy algorithm by adding a little backtracking. If at some
point subtracting a double weight leads to failure, try a single instead. This is essen-
tially the well known (in computer science) recursive solution to the knapsack problem
[4]. Starting with the largest weight is just a way to organize the brute force search
through all the possibilities (which must succeed) in hopes that reducing the problem
recursively by subtracting large weights will find a solution as quickly as possible.

The tree of optimal weight sequences

When we computed optimal weight sequences for several bounding sequences µ we
discovered that although we could not easily understand any particular sequence, stud-
ied together the set of weight sequences displays surprising structure.

Given a bounding sequence µ the sequence of differences µk+1 − µk ∈ {0, 1} de-
termines µ, and any infinite sequence of 0’s and 1’s determines a bounding sequence.
We will use the sequence of differences to identify bounding sequences and hence
optimal weight sequences.

Definition 7. For the finite bit string ∆ of length k let w(∆) be the weight wk for any
of the optimal weight sequences whose bounding sequence differences begin with ∆.
Theorem 5 guarantees that w(∆) is independent of the choice of bounding sequence.
Set W (empty string) = 1.

Then for example w(0) = 2, w(1) = 3 and w(1000) = 41.
It’s natural to display data determined by finite bit sequences at the nodes of a binary

tree: 0 moves to the left child, 1 to the right.
Figure 2 shows part of the tree that in its infinite entirety would display all the

optimal weight sequences. Each path from the root corresponds to a sequence of 0’s
and 1’s, hence to an infinite bit string ∆, a µ and the µ-optimal weight sequence
recorded in the nodes along the path. The mystery weight sequence X is the leftmost
branch in the right half of the tree, corresponding to ∆ = 1000 . . ..

Visible patterns in the tree lead at once to the following.

Theorem 7. Let ∆ be a finite bit string. Write b∆ and ∆b for pre- and post- concate-
nation with bit b. Then

1. The left half of the tree below w(0) = 2 is double the whole tree: w(0∆) =
2w(∆).

2. Following a right branch triples the weight: w(∆1) = 3w(∆) .
3. Following a left branch at least doubles but less than triples the weight: 2w(∆) ≤
w(∆0) < 3w(∆).

Proof. Suppose ∆ is of length k, so determines the weights up to wk = w(∆) in one
of the optimal weight sequences W that start on the path determined by ∆.
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Figure 2 The tree of optimal weight sequences

To prove the first assertion, imagine constructing the tree starting with w0 = 2
rather than 1. It’s clear that you will then be able to weigh all even integers optimally
up to 2w(∆)− 2 while respecting the number of double or negative weights specified
by ∆. If you then view 0∆ as a path in the full tree you’re allowed one more weight,
but no more double weights. Use that extra weight to add the 1 at the root to the even
numbers you already know how to represent in order to represent all the integers up to
any 2w(∆)− 1.

The second and third assertions follow immediately from Theorem 5 .

It’s natural to analyze data in a tree by following paths from the root. It’s less natural
to look for patterns between paths, but there are many in this tree. The first we noticed
concerns the differences between the weights of siblings. (We will often shorten ex-
pressions like “difference between weights of siblings” by the slightly less precise
“difference between siblings”.)

Theorem 8 (Siblings). When you follow a right branch in the tree the difference be-
tween siblings is constant. Formally, for each finite bit string ∆

w(∆11)− w(∆10) = w(∆1)− w(∆0). (4)

Proof. Theorem 7 (2) says w(∆11) = 3w(∆1) so Equation (4) is equivalent to

w(∆10) = 2w(∆1) + w(∆0).

Let w0, w1, . . . , wk, wk+1 be the weight list corresponding to ∆1 and let m =
µ(∆) be the sum of the entries of ∆; then wk = w(∆) is the smallest integer that can
not be weighed with w0, . . . , wk−1 with at most m double weights.

Let N = 2w(∆1) + w(∆0) and suppose N can be represented as

N = d0w0 + · · ·+ dkwk + dk+1wk+1 (5)

with at most µ(∆10) = m+ 1 coefficients equal to 2. Since

w(∆0) > w0 + · · ·+ wk
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and w(∆1) > w0 + · · ·+ wk

it follows that

N = w(∆0) + w(∆1) + w(∆1) > 2(w0 + · · ·+ wk) + wk+1.

That implies dk+1 = 2 and therefore

w(∆0) = N − 2w(∆1) = d0w0 + · · ·+ dkwk,

with at most m = µ(∆0) coefficients equal to 2, contradicting the definition of
w(∆0). Hence N = 2w(∆1) + w(∆0) does not have a representation as in Equa-
tion (5).

Next we show that every positive integer n < N has such a representation. We
consider two cases:

Case 1: n ≤ 2w(∆1). Then n < w(∆10), hence n can be represented as

n = d0w0 + · · ·+ dkwk + dk+1wk+1

with at most m+ 1 = µ(∆10) coefficients equal to 2.
Case 2: 2w(∆1) < n < 2w(∆1) +w(∆0). Then n− 2w(∆1) < w(∆0), hence it
can be represented as

n− 2wk+1 = d0w0 + · · ·+ dkwk,

with at most µ(∆0) = µ(∆) = m coefficients equal to 2. Therefore

n = d0w0 + · · ·+ dkwk + 2wk+1,

with at most 1 + µ(∆0) = µ(∆10) coefficients equal to 2.

Therefore N = 2w(∆1) + w(∆0) is the smallest positive integer that does not
have a representation (5), hence N = w(∆10).

First cousins are nodes with a different parent but a common grandparent. For each
node, the right child of the left child and the left child of the right child are neighboring
first cousins.

Corollary 5 (Cousins). The difference between neighboring first cousins is twice the
difference between their sibling parents. Formally,

w(∆10)− w(∆01) = 2(w(∆1)− w(∆0).

Proof. Let

a = w(∆1)− w(∆0).

Then

w(∆10)− w(∆01) = w(∆10)− 3w(∆0)

= w(∆11)− a− 3w(∆0)

= 3w(∆1)− a− 3w(∆0)

= 3a− a = 2a.
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With the results in this section we can begin to fill in the tree using only elementary
arithmetic and the weights in the mystery sequence.

• At the root, we know the value is 1.
• Theorem 7 fills the second row with w(0) = 2 and w(1) = 3. That tells us the left

half of the third row too: w(00) = 4 and w(01) = 6. The right half of the third row
is w(11) = 9 (Theorem 7) and w(10) = 8 (Siblings).

• The right half of the fourth row starts withw(100) = 18 from the mystery sequence.
Theorem 7 tells us w(101) = 24 and w(111) = 27. Then the Sibling Theorem or
the Cousin Corollary finishes with w(110) = 26.

• Similar reasoning fills the fourth row except for w(1000) = 41, from the sequence
X , and w(1100) = 60 , which seems to require an actual search for the optimal
weight.

We hoped that the mystery sequence X might tell us w(1100) = 60, in fact every-
thing, if only we we could generalize Corollary 5 to more distant cousins.

The rest of this paper shows how that hope played out.

Kissing cousins

In a binary tree a pair of nodes in a row are kth cousins for their nearest common
ancestor node N if they live k + 1 rows below N . 0th cousins are siblings. There are
22k pairs of of kth cousins with common ancestor N since you form such a pair by
choosing one cousin from the left half of the tree belowN and the other from the right
half.

Among those pairs we single out 2k−1 pairs of kissing cousins. If you number the
nodes in row k + 1 belowN as 1, 2, . . . , 2k in the left and right halves then the kissing
kth cousins are the pairs

(2, 1), (4, 2), (6, 3), . . . , (2k, 2k−1) .

Figure 3 marks the pairs of kissing cousins below the root with solid lines and those
below node 1 (weight 3) with dashed lines.

This figure suggests the conjecture that kissing kth cousin differences propagate
when you travel down to the right just as first cousin differences do. For example

w(100)− w(001) = 18− 12 = 60− 54 = w(1100)− w(1001).

We have much more data supporting that conjecture If it is true we can use it to
extend what’s possible with just simple arithmetic and the weights in X . In particular,
we can fill in the missing fourth row value w(1100) = 60.

Unfortunately we will still be stuck trying to find w(10100) in the fifth row. The
two terminal moves left stymie us and there is no pair of kissing cousins to help out.

Since the conjecture doesn’t tell us everything, we content ourselves with stating it
formally and drawing some consequences, and leave the proof to the reader.

Definition 8. For each bit string ∆ we define the kissing cousin pairs below node ∆
recursively.

The pair (∆01,∆10) are kissing first cousins.
For each pair (∆0X1,∆1Y) of kissing kth cousins there are two pairs of kissing

(k + 1)st cousins:

left: (∆0X01,∆1Y0)
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Figure 3 Kissing cousins

and

right: (∆0X11,∆1Y1).

Note that Y is one bit longer than X. For the kissing first cousins, X is empty and Y = 0.
For kth cousins, |Y | = k.

Conjecture 2 (Kissing cousins). The difference between kissing cousins is invariant
when you move their common great-parent down a right branch. Formally, for each
bit string ∆, for each pair of kissing cousins

w(∆11Y0)− w(∆10X01) = w(∆1Y0)− w(∆0X01). (6)

Definition 8 shows that for each ∆ the pairs of kissing cousins naturally arrange
themselves in a binary tree with root (∆01,∆10). In that tree we define the value at
each node to be the difference between the weights of the pair of cousins at that node.
When we wrote out the first few levels of that tree for several fixed ancestors ∆ we
discovered that it too seemed to satisfy Conjecture 2. That’s not an accident.

Theorem 9. Let T be a binary tree in which following a right branch triples the value
at a node and the kissing cousin conjecture holds. Then the same is true for the trees
K(∆) of differences between kissing cousin pairs below ∆ in T .

Proof. Write t(N) for the value at node N in T . Following a right branch in K(∆)
triples because for each X and Y defining a kissing cousin pair

t(∆1Y1)− t(∆0X11) = 3t(∆1Y)− 3t(∆0X1) = 3(t(∆1Y)− t(∆0X1)).

If (∆A,∆B) and (∆C,∆D) are kissing cousins in K(T ) then

t(∆1B)− t(∆1A)− (t(∆1D)− t(∆1C))

= t(∆1C)− t(∆1A)− (t(∆1D)− t(∆1B))

= t(∆C)− t(∆A)− (t(∆D)− t(∆B)).

The last equality is true because the terms on the right are kissing cousin differences
in T , equal because they come from following the right branch appending 1 to ∆.
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The tree of kissing cousin differences depends on the chosen common ancestor ∆,
which you can think of as the head of a family, so taken together those trees are a forest
of (overlapping) family trees. Examining the tree headed byw(10) = 8 shows that we
can’t conjecture some further resemblances with the weight tree. In particular, there
are places when the left kissing cousin difference is greater than three times the parent
cousin difference. There is much more to be explored in these forests.

What next?

We started with an unanswered fourth grade balance weighing question: what happens
when you allow just one weight on the pan with the unknown?

Explorations at that elementary level revealed the power of positional notation as a
tool and a metaphor.

We showed how answers to generalizations of that question live in an interesting,
richly structured tree of weights.

There is more nice mathematics waiting to be discovered (or invented, depending
on your philosophy of mathematics):

• Find good algorithms for calculating optimal weight sequences, or prove that these
calculations are intrinsically difficult, essentially calling for brute force search. In
particular, understand the mystery sequence X = (1, 3, 8, 18, 41, . . .) that answers
the fourth grade open question.

• Given an optimal weight sequence, find a good algorithm for how to weigh with it,
or prove that these calculations are intrinsically difficult.

• Prove the kissing cousin conjecture.
• Think about which weight sequences are optimal for some bounding sequence.
• Generalize to allow multiple (but bounded in number) weights of each size.
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