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ABSTRACT
We present a conditional generative adversarial learning approach
to synthesize the gaze behavior of a given personality. Training is
done using an existing data set that comprises eye-tracking data
and personality traits of 42 participants performing an everyday
task. Given the values of Big-Five personality traits (openness,
conscientiousness, extroversion, agreeableness, and neuroticism),
our model generates time series data consisting of gaze target,
blinking times, and pupil dimensions. We use the generated data to
synthesize the gaze motion of virtual agents on a game engine.
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1 INTRODUCTION
Expressive eye movements are essential for believable virtual char-
acter animation. They effectively communicate attention in addition
to conveying information about the emotional and mental states
of the individual. Personality is among the factors that control and
explain the various manners of gaze behavior. Studies show correla-
tions between different aspects of personality and gaze parameters
such as gaze shifts and blink rates [1, 4, 8].

In this work, we propose a data-driven, generative approach to
synthesize gaze behaviors for different personalities. We use data
acquired from individuals in an everyday setting as opposed to
data from actors playing a given role based on known personality-
gaze correlations [9]. This helps capture the small details of gaze
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cues not yet conceptualized but reflecting certain personality traits.
We employ the Big-Five (openness, conscientiousness, extrover-
sion, agreeableness, and neuroticism) model of personality [2]. We
train a generative adversarial network (GAN) conditioned on per-
sonality using an existing personality-annotated dataset [4]; and
animate the eye movements of a virtual model with the generated
data. Although deep learning has been used to synthesize gaze
movement [5], the applications are limited to eye and body pose
coordination for target following. To our knowledge, this work is
the first to apply deep learning to generate eye movement data
based on personality expression.

2 METHOD
2.1 Gaze Parameter Synthesis
To synthesize gaze parameters, we build a GAN conditioned on
personality values [3]. For training, we use the dataset provided
by Hoppe et al. [4], which consists of binocular eye movement
data of 42 participants, each with an average of 12.51 minutes of
tracking information and personality scores for five factors binned
into three groups of low, medium and high. The dataset includes
participants’ Big-Five values, time-series data for gaze coordinates,
blinking times, and pupil dimensions. The data was acquired by
head-mounted eye trackers while participants walked around the
campus and purchased an item of their choice from a campus shop.
The availability of personality information and the everyday nature
of the performed tasks make this dataset a good fit for our goals.

The GAN is composed of two competing networks: a discrimina-
tor (𝐷) and a generator (𝐺), trained simultaneously. G learns a dis-
tribution 𝑝𝑔 over data 𝑥 while D is trained to discriminate between
the real data and synthetic data𝐺 (𝑧), where 𝑧 is input noise drawn
from a random normal distribution. Conditional GAN [6] extends
the model on given classes, allowing direct data generation given
class labels. In our model, we integer-encode the personality values
into class labels. The model handles conditional labels 𝑦 with distri-
bution 𝑝𝑙 to minimize E𝑥∼𝑝𝑟 ,𝑦∼𝑝𝑙 [𝑙𝑜𝑔(𝐷 (𝑥,𝑦))] + E𝑧∼𝑝𝑔,𝑦∼𝑝𝑙 [1 −
𝑙𝑜𝑔(𝐷 (𝐺 (𝑧,𝑦), 𝑦)]. For G and D, use the DCGAN architecture [7],
but with 1D convolutional neural networks(CNNs) for time-series
data generation and discrimination. CNNs allow time-invariant
feature extraction and can be easily extended to multivariate time-
series data.

Because the blinking information is discrete (0 or 1 depending
on blink detection at each timestep), it requires an additional step
between the generator and the discriminator to provide contin-
uous gradients. For this, we pre-train an autoencoder to encode
and decode the binary data, and send the output of the generator
to the decoder first, then send the output of the decoder to the
discriminator. The model architecture is shown in Figure 1.
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Figure 1: Label-preserving, conditional GAN architecture.

Discriminator input is a vector comprising the x and y coordi-
nates of gaze positions, pupil diameters, and binary blinking data.
We organize the data by sliding windows of size 300 corresponding
to 5 seconds of data sampled at 60 Hz. For each of these 300-frame
windows, we perform a strict quality test and discard the windows
that include at least one row with x or y coordinates beyond the
[0, 1] range or pupil dimensions equal to zero. This leaves only the
valid data points. Before feeding the continuous data into the GAN,
we normalize it into the [−1, 1] range. Personality comprises the
conditional class label that specifies each participant. It is intro-
duced to the network as a 50-dimensional embedding vector that
encodes 243 possible values (35 for each bin and personality dimen-
sion). Since the dataset is limited, only 24 of 243 possible classes are
represented in the training set. This conditions the discriminator
on the seen classes, but allows the generator to predict sequences
for unseen classes. We also train the model for each personality
dimension separately, where the personality dimension has three
labels representing the low, medium, and high values per personal-
ity. We train mini-batches of size 64, using Adam optimizer with a
learning rate of 0.0001 both for D and G.

2.2 Evaluation
To evaluate the GAN model quantitatively, we train a deep 1-D
CNN classifier on real data, synthesize a large number of data
points and predict the probability of them belonging to each per-
sonality bin (class). Inception score is a metric to summarize these
predictions [10]. Table 1 shows the average scores of 1000 itera-
tions for the test data for real and synthetic values. When we train
the classifier on all the five dimensions, the inception score is low
because the representation in the training data is limited. We also
compute the inception scores when each dimension is introduced
as a condition separately. Considering that there are three classes
per personality dimension, the closer the inception score to 3, the
better the results.

Table 1: Inception scores for synthetic and real data
Data O C E A N All dims

Synthetic 2.38 2.25 2.56 2.41 2.56 6.23
Real test 2.87 2.63 2.88 2.78 2.89 15.62

2.3 Gaze Animation
We animate the eye movement, pupil dilation, and blinking on a 3D
humanoid model with blend shapes for face. The eye tracker glasses

Figure 2: Animated gaze of an extrovert (left) vs. an introvert
(right) model.

that were used to capture gaze data (SMI) have 60° horizontal and
46° vertical field of view angles. Using these angles, we convert
the x and y values, which are in the range [0, 1] corresponding to
the device space coordinates, to the world space. The target in the
world space is the look-at direction of the eyes. For convenience, we
take the middle point of the left and right eyes as the eye position.
In addition to rotating the eyeballs to align with the look-at vector,
we update the weights of the eyelid blendshapes so that they move
naturally when the eyes move up and down. We update the pupil
dimension by applying forces to the vertices on the pupil perimeter
towards or out of the center of the pupil. Figure 2 shows a model
with different personalities and gaze behaviors.

3 CONCLUSION
Our method is a preliminary step in synthesizing and animating
time-series gaze data. The next step will be to create a personality-
annotated gaze dataset during a conversation and to use our gener-
ative approach on this set. The dataset will include similar features,
in addition to information about the conversation target as well as
head and torso pose information. We believe that the social nature
of the task will help capture more salient features of personality
expression. We will evaluate the realism of the animations through
user studies.
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