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Fig. 1. We adjust voice, body movement, and facial expressions to simulate personalities of virtual agents. The left half shows an extraverted agent, and the
right half shows an introverted agent in a scenario involving interaction with a passport officer where the agent responds to questions about his passport and
origin. The portraits show the corresponding facial expressions.

Consistently exhibited personalities are crucial elements of realistic, engag-
ing, and behavior-rich conversational virtual agents. Both nonverbal and ver-
bal cues help convey these agents’ unseen psychological states, contributing
to our effective communication with them. We introduce a comprehensive
framework to design conversational agents that express personality through
non-verbal behaviors like body movement and facial expressions, as well
as verbal behaviors like dialogue selection and voice transformation. We
use the OCEAN personality model, which defines personality as a combina-
tion of five orthogonal factors of openness, conscientiousness, extraversion,
agreeableness, and neuroticism. The framework combines existing personal-
ity expression methods with novel ones such as new algorithms to convey
Laban Shape and Effort qualities. We perform Amazon Mechanical Turk
studies to analyze how different communication modalities influence our
perception of virtual agent personalities and compare their individual and
combined effects on each personality dimension. The results indicate that
our personality-based modifications are perceived as natural, and each addi-
tional modality improves perception accuracy, with the best performance
achieved when all the modalities are present. We also report some correla-
tions for the perception of conscientiousness with neuroticism and openness
with extraversion.
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1 INTRODUCTION
Concepts from human psychology, such as emotions and person-
ality, are widely used in research on intelligent agents for creating
realistic characters with a rich set of behaviors and effective commu-
nication skills. Especially, endowing virtual agents with personality
has been shown useful in building rapport and enhancing user ex-
perience in various domains [Gratch et al. 2007]. For instance, a
virtual character can be equipped with the most favorable personal-
ity to build trust with a job applicant [Zhou et al. 2019], increase
patients’ willingness to disclose health information [Lucas et al.
2014], help reduce anxiety in individuals with autism and develop-
mental disorders [Burke et al. 2017], take part in a virtual audience
to alleviate the fear of public speaking [Batrinca et al. 2013], or
support creativity by brainstorming ideas taking user personality
into consideration [Buisine et al. 2007].

Creating compelling personalities is a multi-faceted task, and the
omission of necessary communication channels can be detrimen-
tal to the believability of the virtual agent and the communication
of the message. In humans, various modalities such as physical
appearance and body posture [Naumann et al. 2009], as well as
speech [Polzehl 2015] and dialogue content [Mairesse et al. 2007]
influence judgments of others’ personalities. Previous research on
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virtual characters indicates correlations between different modali-
ties of behavior and the perceived personalities of characters. For
instance, there is a link between the facial features of virtual char-
acters and personality inference [Todorov et al. 2008]. Similarly,
people assess the personalities of animated characters based on
their gestures, speech content [Neff et al. 2010], and movement
styles [Durupinar et al. 2017] and react to them as they would to
real humans [de Borst and de Gelder 2015].
We introduce a framework to create conversational agents that

express personality through a comprehensive model consisting of
facial expressions, body movement, verbal style, and voice trans-
formation. In technical terms, we translate the agent’s personality
features into automated modifiers for three-dimensional (3D) anima-
tion and auditory parameters, referring to theories from psychology
and social sciences to analyze and parameterize each concept. We
then evaluate how much each modality contributes to personality
perception to understand effective (virtual) communication strate-
gies. Such a model can be used in video games and animated movies
to build immersive experiences, and in developing virtual tutors
and assistants to improve approachability (e.g., virtual health-care,
support desk) and in social virtual environments to represent the
individual better.
We use the OCEAN model [McCrae and John 1992] to describe

the personality of an agent. We utilize Laban Movement Analysis
(LMA) [Adrian 2008; Maletic 2011] to define body motion controlled
by OCEAN factors as a formal parameterization between OCEAN
and LMA elements that exist in the literature [Durupinar et al. 2017].
For the connection between speech content and OCEAN personal-
ity, we refer to the correlations introduced by Mairesse and Walker
[2010], who link a set of linguistic cues [Tausczik and Pennebaker
2010] to OCEAN personality traits. We adopt this theory to hand-
crafted dialogue text that fits each personality type. To configure
the vocal features of speech that influence the perceived personality,
we use the mapping introduced by Polzehl [2015].

The contributions of this work are two-fold:

• We introduce a comprehensive conversational agent framework
that allows the creation of virtual characters that interact with
human users through various communication channels. The char-
acters are capable of expressing all the five factors of personality
through dialogue, voice, body motion, and facial expressions. To
our knowledge, no such system that combines all these modalities
of personality expression exists to-date. Our system uses both
existing methods shown to be effective in conveying personality
and novel algorithms. Specifically, we introduce new methods for
the expression of Laban Shape and Effort Qualities in addition to
updating emotional facial expressions given OCEAN personality
values. We define a mapping between personality traits and La-
ban Shape Qualities to improve personality expression through
body motion and validate this through Amazon Mechanical Turk
studies. Additionally, we establish affinities between emotional
facial expressions and personality through crowd-sourcing ex-
periments on Amazon Mechanical Turk. We provide the source
code of our implementation at https://github.com/sinansonlu/
Conversational-Agent-Framework.

• We analyze the effectiveness of different communication modali-
ties and their combinations in the perception of virtual human per-
sonalities. We show that additional modalities generally improve
personality recognition, with the highest performance achieved
when all the modalities are combined. We also analyze the cor-
relations between different OCEAN dimensions when different
communication channels are active. The results indicate correla-
tions for the perception of conscientiousness with neuroticism,
and openness with extraversion. Our evaluations are based on the
data that we collected through Amazon Mechanical Turk studies.

In Section 2, we summarize the background and review related
work. We introduce the system framework in Section 3, describe
the animation modification process in Section 4, explain our experi-
ments and evaluation in Section 5, and provide a general discussion
about experimental findings in Section 6. We conclude with future
research directions in Section 7.

2 BACKGROUND AND RELATED WORK

2.1 Background
2.1.1 Communication Model. Communication is an encoded mes-
sage transfer between two sides. Reception can occur through mul-
tiple channels, and decoding is required on the receiver’s side to
interpret the message. Humans communicate through channels of
facial expression, body language, voice, verbal style, and verbal con-
tent [Ekman 2019]. Key [1975] groups interpersonal communication
as indirect and direct. Indirect communication includes external
factors such as the surrounding environment. Direct communica-
tion is internal to the sender and the receiver. It includes anything
that belongs to or emerges from them. Key [1975] categorizes di-
rect communication into verbal and nonverbal. The verbal category
covers language-related topics, including grammar and word pref-
erences, which form the message as a sentence. This sentence could
be spoken or transferred using a language substitute. Key [1975]
classifies the nonverbal category into paralanguage and kinesics.
Paralanguage includes non-speech sounds, vocal features, and into-
nation. Kinesics include all movements resulting from the muscular
and skeletal shift, which is encapsulated by the appearance. She
examines the muscular activity in the face in a group called facial
expression, and the remaining movements in posture.
We adapt the communication model of Key [1975] to computer

animation. An animated scene consists of an environment and at
least one agent. The environment covers indirect communication
elements of scene properties, lighting, and camera. The agent covers
direct communication, including the 3D model, body movement,
facial expression, and speech. We further categorize speech as voice
and content. The agent’s movement, facial expression, and speech
can be used expressively to communicate a message encapsulated
by personality.

2.1.2 OCEAN Personality Model. Five-factor Personality Model is
a commonly used personality classification framework in psychol-
ogy [McCrae and Costa 2005]. In this model, the personality of
an individual is analyzed in five orthogonal dimensions including
Openness to Experience, Conscientiousness, Extraversion, Agree-
ableness, and Neuroticism, that form the acronym: OCEAN. Each
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dimension is two ended, and the low and high ends are explained
with multiple personality attributes that are grouped in one factor.
The orthogonal and descriptive nature of this model makes it a
popular choice in computer science.
Another popular personality model used in the simulation of

virtual crowds and interactive agents is the PEN model of personal-
ity [Eysenck and Eysenck 1985], which focuses on three dimensions:
psychoticism, extraversion, and neuroticism. As an example, Bera et al.
[2017] introduce an automatic classifier for predicting pedestrian
personality in crowd videos using the PEN model. Both the PEN and
OCEAN personality models are factor analytic– their main differ-
ence is the factors they represent. The approaches that we employ,
such as Mairesse and Walker [2007], Polzehl [2015], and Durupinar
et al. [2017], use the OCEAN model of personality; therefore we
also employ this five-factor model.

2.1.3 Laban Movement Analysis. Laban Movement Analysis (LMA)
is a framework used for describing human movement. LMA is used
by many researchers in computer graphics and robotics to describe
humanoid motion [Bernstein et al. 2015; Burton et al. 2016; Du-
rupinar et al. 2017; Lourens et al. 2010; Zhao and Badler 2001]. LMA
includes components to analyze motion in terms of spatial and tem-
poral relations of body parts. We can translate these concepts into
computer animation using quantitative descriptors for human mo-
tion [Larboulette and Gibet 2015]. As a link between the OCEAN
model and LMA, we refer to previous research that connects these
concepts together [Durupinar et al. 2017].

2.2 Related Work
2.2.1 Expressive Agents. Expressive conversational behavior is a
crucial part of realistic communication in animated virtual agents [van
Straalen et al. 2009]. Early research in this area has established
models that integrate nonverbal elements into communication. For
instance, Cassell et al. [1994] couple speech, intonation, facial ex-
pressions, and hand gestures in animated conversation; Allbeck
and Badler [2002] model the agent’s personality, mood, and affect;
Gebhard [2005] introduces ALMA - a layered model of affect; and
Pelachaud [2005] utilize Affective Presentation Markup Language
for expressive nonverbal behavior.

Expressive verbal and non-verbal behaviors in virtual characters
convey a wide range of traits such as friendliness and warmth [Rand-
havane et al. 2019a], competence [Nguyen et al. 2015], and gen-
der [Vala et al. 2011]; as well as increasing the sense of presence in
virtual reality environments [Randhavane et al. 2019b]. Appropriate
speech and gaze increase the social presence in multi-party inter-
action [Yumak and Magnenat-Thalmann 2016]. Rendering style is
another factor that influences the perception of friendliness, appeal,
and realism of virtual characters [McDonnell et al. 2012; Zell et al.
2015]. However, attention must be paid to virtual character design,
as incongruous expressions may lead to the exaggeration of the
uncanniness effect [Tinwell et al. 2011].
Castellano et al. [2011] show that people can identify the emo-

tional content of synthesized gestures when a motion’s expressive
features such as fluidity are mapped from the captured motion to
synthesized animation. This suggests that motion style can be sepa-
rated from motion content, and expressed in new motions. Similarly,

the computer graphics community has been interested in establish-
ing a mapping between high-level motion features and apparent
personality or emotions. LMA is a popular choice for analyzing and
designing expressive motion [Burton et al. 2016; Durupinar et al.
2017; Masuda and Kato 2010] and generally used for parameterizing
high-level motion.

2.2.2 Personality Expression in Virtual Agents. Several works em-
ploy personality to guide virtual character behavior such as motion,
multi-agent interaction, and speech [Durupınar et al. 2016; Gebhard
2005; Shvo et al. 2019]. We compare our work to others that investi-
gate the influence of different communication elements on apparent
personality. Among these, Durupinar et al. [2017] describe links
between low-level motion parameters and LMA to express OCEAN
personality in virtual characters. They focus on the whole-body
motion and manipulate animation keyframes to define LMA param-
eters in collaboration with LMA experts. They perform a user study
to establish an OCEAN-LMAmapping, which we adopt in this work.
Different from Durupinar et al. [2017], we use a different set of
low-level motion parameters to implement LMA qualities and apply
Inverse Kinematics to adjust hand motion further. We also include
dialogue, vocal adjustments, and facial expressions to investigate
the influence of these modalities on apparent personality.
Similarly, Smith and Neff [2017] focus on gesture performance

using a set of motion modification parameters mapped onto OCEAN
personality. They analyze each motion parameter’s influence on
apparent personality in short animated clips. They conclude that
people’s perception of personality happens in a two-dimensional
space when it is based only on gestures. This is also compatible
with the Big Two model of personality, which consists of plasticity
(openness and extraversion) and stability (conscientiousness, agree-
ableness, and neuroticism). Our findings also support the existence
of these two higher order dimensions. Smith and Neff [2017] include
the speech of the motion capture actor in one experiment; however,
different from our work, they do not investigate the influence of
verbal elements on personality. Besides, they exclude the agent’s
face, while we use it as an additional vessel of personality.

2.2.3 Data-Driven Approaches in Expressive Motion. Data-driven
techniques have been commonly used to generate expressive agent
behavior. Ball and Breese [2001] diagnose the user’s emotions and
personality to generate appropriate agent behavior using Bayesian
networks. Hartmann et al. [2002] synthesize gesture from aug-
mented conversation transcripts utilizing high-level gesture def-
initions. Lee and Marsella [2006] extract nonverbal behavior rules
from real-life video clips that accompany the dialogue. Recently,
Burton et al. [2016] generate emotional motion by automatically
quantifying LMA parameters; and Randhavane et al. [2019c] gener-
ate expressive walking animation for varying dominance levels.
An effective strategy to generate varying motion styles is style

transfer [Aberman et al. 2020; Yümer and Mitra 2016], which modi-
fies the style of an existing motion while preserving its intention.
Motion datasets with emotion, age, or movement style labels are
available [Xia et al. 2015]; yet, there’s still a need for personality-
annotated motion datasets of adequate size, whether they are 3D
motions or 2D full-body videos. Examples such as [Escalante et al.
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2018] employ user videos that focus on the face with limited infor-
mation on the body. As a result, procedural methods are still popular
and offer manageable environments for personality perception ex-
periments. As more data becomes available, replacing procedural
methods with data-driven techniques will be straightforward thanks
to the usage of LMA as an intermediate motion descriptor between
personality expression and low-level motion parameters.

2.2.4 Audio and Verbal Features. Verbal interaction with the agent
is possible through natural language processing [Best et al. 2020]
and is a crucial aspect of expressive communication. The choice of
words in social media messages has shown strong connections to
personality [Golbeck et al. 2011]. Linguistic cues are effective predic-
tors of OCEAN traits, especially extraversion [Mairesse et al. 2007].
Text that expresses certain personality types can be generated using
rule-based language modifiers in a specific context [Mairesse and
Walker 2007]. We adopt the linguistic cues described by Mairesse
and Walker [2007] to convey personality in agent dialogue.
Additionally, vocal features carry information about personal-

ity; and this knowledge is used to both detect personality and to
express it. Machine learning models can successfully predict per-
sonality based on speech signals [Gilpin et al. 2018]. Through a user
study, Polzehl [2015] labels a speech dataset with OCEAN person-
ality factors and extracts audio descriptors such as intensity, pitch,
and loudness to train a Support Vector Machine. Polzehl’s findings
lay the foundation of our vocal feature adjustments. In addition
to personality, audio features can be used to express emotions in
procedural speech animation [Charalambous et al. 2019].

Although there exist many models and experiments that explore
the influence of different subsets of movement, facial expression,
dialogue, and voice on personality, a thorough analysis of a compre-
hensive system that incorporates all these elements is needed. We
present such a framework to understand the influence of the combi-
nation of such modalities on personality perception. The framework
is component-based and open-source so that researchers can test
their own models, animations and methods to expand our knowl-
edge of virtual agent communication.

3 SYSTEM FRAMEWORK
The system consists of two main components: Scenario Handler and
Animation Modifier. The input consists of agent personality and user
speech. The agent responds to the user with a personality-driven
dialogue utterance and expressive animation.

Scenario Handler (see Figure 2) is a state machine that determines
the agent’s response to the user’s speech. Using Watson API [IBM
2015], it transcribes the speech, finds user intent, selects an appro-
priate response based on the intent, and vocalizes this response by
text-to-speech conversion. We train Watson Assistant by setting
entities and intents using multiple examples per scenario. For exam-
ple, for “Show Passport” intent, we train the system using examples
such as “May I take a look at your passport?”, “Could you give me
your passport, please?”, and “Where is your passport?” so that it
can recognize similar inputs. Entities are the variable words within
training examples of intents. They are trained in the same manner
and recognized within the intent. Based on the extracted intent and
entities, Scenario Handler determines the corresponding dialogue

that is compatible with agent personality and the accompanying
base animation without personality-based modifications. Scenario
Handler then uses Watson Text to Speech API to convert the dia-
logue into speech and tweaks the vocal features of the generated
speech according to the OCEAN parameters of the agent. At the end
of the agent speech, Scenario Handler checks whether the end state
of the current scenario is reached, in which case it stops execution.
Otherwise, it updates the state of the current scenario and starts a
new turn.
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No YesUser 
Subm�t

In�t�al�ze 
Scenar�o 

Watson Ass�stant

Map 
Intent

Watson Text 
to Speech

Play 
An�mat�on

Play 
Speech

Wa�t for Agent 
Speech to End

No

Yes

Speech 
End Yes

No

Scenar�o 
F�n�shed

Speech 
Transcr�pt

On Screen 
Transcr�pt 

Intent 
and Ent�t�es

Base 
An�mat�on 

D�alogue 
Sentence

OCEAN 
Parameters

Agent 
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Scenar�o State 

F�n�sh 
Execut�on 

Fig. 2. The Scenario Handler flowchart.

Animation Modifier (see Figure 3) is responsible for adjusting
the bone rotations and facial shape keys of the agent at each frame,
by modifying the base animation according to agent personality.
It maps the OCEAN values into three groups of animation modifi-
cation parameters: Laban Shape Quality (LSQ), Laban Effort (LE),
and Facial Expression. These parameters are calculated once at the
beginning and used throughout the execution. LSQ parameters de-
termine positions and weights of Inverse Kinematics (IK) targets; LE
parameters further refine the animation with additional rotations;
Facial Expression parameters regulate the interpolation of facial
shape keys. We extract visemes from speech using Lipsync [Oculus
2019] and blend them into facial shape keys to animate the mouth.
Agent emotions are shown as facial expressions and decay over time.
We have developed the system in Unity [2019] and used Fuse [Adobe
2019] for creating 3D human models with a skeletal rig and facial
shape keys.
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To evaluate the system, we implemented three scenarios: Intro-
duction, Fastfood, and Passport. Each scenario includes an appro-
priate scene setup, one main agent, and a dialogue state machine.
The scenarios aim to direct the user input into a specific direction
because each agent is designed for scenario-specific dialogues. The
user is either given a task at the beginning of a scenario or guided
with state-specific descriptions inside the scene. The scenarios are
described in Appendix A. We performed a detailed perception study
for the Passport Scenario. The Animation Modifier runs in real-time,
and the bottleneck of the Scenario Handler is the external APIs that
we use for speech transcription and generation. To minimize the
latency caused by any external API, we used predefined user and
agent sentences in the perception study.
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Fig. 3. The Animation Modifier flowchart.

4 PERSONALITY-DRIVEN MODIFICATION MODULES
We group the operations that modify a given input based on agent
personality into four modules: dialogue, voice, body movement, and
facial expression modification, as shown in Figure 4. Each module
uses internal mappings to customize the animation for expressing
the desired personality.

Model VFB
Model VB

Model VF
Model V

Base Model

Vo�ce 
Module

Fac�al
Express�on 

Module

Body
Movement 

Module
D�alogue 
Module

Fig. 4. Personality modification modules and models used in the experi-
ments.

4.1 Dialogue Module
Generally, personality cues are inherent in dialogue content; an
average person can make personality judgments based on dialogue
text [Mairesse et al. 2007]. To our knowledge, except for domain-
specific models [Mairesse and Walker 2010], the state-of-the-art
natural language systems are not capable of generating general
dialogue for OCEAN personality types [Dušek et al. 2020]. It is
a common approach to use handcrafted dialogue with embodied
agents to express personality [Brixey and Novick 2019]. We leave
the incorporation of an automated, personality-driven dialogue
generation for future work and use handcraft utterances for each
personality type, following the natural language features inMairesse
and Walker [2007].
Table 1 shows example variations for one line of dialogue from

the Passport Scenario.

Table 1. An example for personality specific dialogue lines.

Type Text (Original: “Ok, I will buy my return ticket.” )

O(+) “Of course, I’m going to buy it for sure. I should have done
it before; this will be a lesson for me.”

O(−) “Oh, ok. I will buy it.”

C(+) “Yes, I am going to buy my return ticket as soon as possible.”
C(−) “I will buy it... I will, as soon as possible.”

E(+) “Yes, I will buy the return ticket immediately. Thank you,
officer.”

E(−) “Ok, I will.”

A(+) “Thank you very much for reminding, I’m going to buy it
as soon as possible.”

A(−) “Well, I have to, you know. I will buy it.”

N (+) “I. . . I am going to buy it. I will buy it as soon as possible.”
N (−) “Sure, I will buy it as soon as possible.”

4.2 Voice Module
According to Polzehl [2015], the vocal features of speech can be
adjusted to reinforce personality. Watson Text-to-Speech API [IBM
2015] supportsmultiple transformable voices.We use “en_US_Michael”
for male and “en_US_Allison” for female voices.We use the following
parameters of IBM Watson API for transforming the voice:
Pitch: The frequency of the voice. Speech sounds more excited

when the pitch is high, and calmer when it is low.
Pitch range: The pitch variation during the speech. A higher range

sounds more melodic and dynamic, and a lower range is
monotonous.

Rate: The speed of the voice. A high rate is perceived as hurried
and excited, and a low rate sounds calm.

Breathiness: The amount of escaping air during sound production.
High breathiness is perceived as calm.

Glottal tension: The hardness of the voice. High glottal tension is
perceived dynamic and tense, and low glottal tension sounds
calmer and softer.
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We follow the personality-to-vocal features mapping introduced
by Polzehl [2015]. Polzehl uses words such as “high”, “medium” and
“low” in the mapping. We interpret these correlations as a weighted
average of OCEAN factors as shown in Table 2. We map the feature
values into different ranges to keep the transformed voice natural.

Table 2. Numerical mapping between vocal features and OCEAN personal-
ity, following Polzehl [2015].

Feature O C E A N Range

Pitch 1 0.5 0.5 −0.5 −0.5 [−80, 80]
PitchRange 1 — 1 — — [−100, 100]
Rate 1 1 −1 1 — [−70, 70]
Breathiness 1 — — 1 — [−50, 50]
GlottalTension 1 −1 — 1 — [−100, 100]

4.3 Facial Expression Module
Recent studies have shown associations between facial features and
judgment of personality on virtual characters [Ferstl and McDonnell
2018; Wang et al. 2013]. However, personality judgments of real
and virtual faces tend to differ [Ferstl and McDonnell 2018], and
the associations observed for real faces are not always consistent
(e.g. correlating facial symmetry with high extraversion) [Fink et al.
2005], requiring further research. Evaluating our judgments and
understanding possible biases are valuable, and employing these
findings in character design can enhance our interaction with virtual
characters. On the other hand, it also poses the risk of promoting
stereotypes. So instead, we look for associations between personality
and dynamic features of appearance, one of which is the usage of
facial expressions.
We animate the facial expression of an agent, as a facade of its

emotions, by blending facial shape keys calculated as a weighted
sum of five different emotions: anger, sadness, happiness, disgust,
surprise. We use 50 shape keys of the model generated from Adobe
Fuse [Adobe 2019]. Please refer to Appendix B for the shape key
weights of each emotion. We store the current and target values of
shape keys in arrays and linearly interpolate the current value of
each shape key towards its target at each frame.
Each emotion takes a value between 0 and 1 and decays over

time. The emotion update is based on two inputs. The first one is
the agent’s current utterance, as dialogue is a natural indicator of
emotional content for a conversational agent. The second one is the
agent personality, which indicates a tendency to experience certain
emotions more than others. We performed a user study to establish
a link between personality perception and the facial expression of
emotions. Please refer to Appendix C.2 for the details of this study.
Watson Natural Language Understanding API [IBM 2015] esti-

mates emotions of anger, disgust, sadness, and happiness from text,
returning an emotion value between 0 and 1 for each sentence. For
example, “Such a lovely day.” produces joy = .78, anдer = .01,
disдust = .01, sadness = .03, and f ear = .09; while “I don’t
want to talk with you anymore.” produces joy = .04, anдer = .11,
disдust = .09, sadness = .59, and f ear = .20. For each line of agent
dialogue, we update the agent’s emotion value using the Watson

API output for that line. Then, we add personality-based expression
parameters given in Table 3 to align the expression of emotions
with agent personality. For instance, for an extravert agent uttering
“Such a lovely day.”, the facial expression parameters for happy, sad,
angry, surprised, and disgusted will be updated by (0.78 + 0.25),
(0.03 - 0.25), 0.01, 0.09, and 0.01, respectively. These values are then
clamped between 0 and 1. The resulting expression is a blend of mul-
tiple emotions [Martin et al. 2006]. Although some complex facial
expressions can be interpreted differently when there are multiple
blending factors, we do not focus on analyzing these combinations
because they rarely occur in the current system.
Emotion decay occurs while the agent is listening, which helps

produce a natural listening animation [Maatman et al. 2005]. We
calculate the emotion decay rate using neuroticism, similar to Kasap
et al. [2009]. Additionally, we scale the facial expression by an expres-
siveness factor, which is determined by the extraversion parameter.
This makes it possible to have subtle expressions on introvert agents
and exaggerated ones on extraverts. Finally, different from the other
shape keys, we update the blink speed based on neuroticism [Hoppe
et al. 2018].

Table 3. Additive facial expression values from the Facial Expression - Per-
sonality Experiment. Corresponding values are added to the agent’s facial
expression per turn of dialogue. Negative factors have the opposite sign.

Factor Hap. Sad. Ang. Sur. Dis.

O (+) +.13 .00 −.25 .00 .00
C (+) +.13 .00 −.13 −.35 −.13
E (+) +.25 −.25 .00 .00 .00
A (+) +.25 .00 −.50 −.25 −.35
N (+) −.13 +.35 +.50 +.35 +.35

4.4 Body Movement Module
4.4.1 Movement Modifications by Laban Shape Qualities. Laban
Shape Qualities describe the way the body changes form during
movement in three orthogonal axes: longitudinal (Rising/Sinking),
frontal (Spreading/Enclosing), and sagittal (Advancing/Retreating).
We modify a given motion by orienting the end effectors (hands)
towards a certain direction based on Shape parameters. To this end,
we place six anchor points equidistantly around the center of the
body, positioning them up, down, left, right, front, and back–the
body center is the seventh anchor. These anchor points, along with
Shape parameters, are used to update the hand IK targets at each
frame.

We calculate Laban Shape Quality values (LSQi ∈ [−1, 1] , where
i ∈ {Rising, Spreading,Advancing}) based on OCEAN parameters.
The sign of LSQi determines the direction of movement. For ex-
ample, LSQRising > 0 indicates rising motion whereas LSQRising <
0 indicates sinking motion. Each LSQi determines the attraction
towards a specific anchor. For example, we use the top anchor for
LSQRising > 0, and the bottom anchor for LSQRising < 0. Sagittal
axis is computed similarly, using the top and bottom anchors for
both hands. In the frontal axis, however; we need to use separate
anchor points for each hand. We use the center anchor (Enclosing)
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and the left anchor (Spreading) for the left hand (Figure 5), and the
center anchor (Enclosing) and the right anchor (Spreading) for the
right hand.

Longitudinal Axis

Frontal
Axis

Sagittal Axis

Top Anchor

Left
Anchor

Bottom Anchor

Back Anchor

Front
Anchor

Center Anchor

Fig. 5. The anchor points for the left hand.

We compute the attraction towards a specific direction of the
corresponding axis by multiplying the sign of LSQi by an attraction
factor. At each time step, we use linear interpolation to find IK target
positions for each LSQi and take their average as the final IK target
position for each hand h. We then feed the calculated positions into
the IK Solver to generate a refined pose.

Depending on the nature of the animation, attraction factors can
be constant or time-variant. As a preprocessing step, we calculate
a constant attraction factor (AF) for each anchor, normalizing the
difference between the farthest distance of the hand from the anchor
and the closest distance of the hand from the anchor during the
course of the hand’s base animation. For certain motions, such as
an idle animation where hands move slightly around their resting
position, using this time-invariant attraction factor is sufficient.
Because hand displacement is minimal in such cases, keeping the
attraction to all the anchors at minimum avoids unnatural poses.
However, larger-scale hand motions require the attraction factor
to be updated dynamically. In those cases, we use time-variant
attraction weights (W ) to preserve the essence of the base animation.
Multiplying them byAF gives us time-variant attraction factorsAFt .
For instance, consider a pointing motion starting with the hand at
a resting position and ending with the hand in a forward-pointing
state. To update this motion in the sagittal direction, we need to
move the hand position forward during the animation. Doing this at
the starting statewould impair the intent of pointingmotion. Instead,
the hand should be pushed further away from the body during the
pointing step. In other words, we want to use the highest attraction
weight towards the front anchor when the hand is closest to the
anchor point and the lowest one when it is farthest from the anchor
point. Figure 6 shows waving, which is a relatively large-scale hand
motion, with constant and varying attraction weights. Constant

anchor weights cause the hand trajectory to change dramatically,
so the resulting motion no longer appears natural. In contrast, with
variable anchor weights, the resulting animation is still similar to
the base animation with Spreading Shape.

Although our current Laban Shape Quality adjustment algorithm
is designed for atomic gestures, it is relatively straightforward to
extend it to modify motion clips that are composed of multiple
gestures, as long as we know the start and end frames of each gesture.
We can then compute the hand movement range for each gesture,
and update the attraction factors accordingly. Motion segmentation
can be done manually, or better yet, automatically, considering the
semantics of the movement. However, we leave this as a future
work because our scenario handling mechanism employs separate
animation clips with atomic actions.

Fig. 6. The trajectory of the left hand for a waving motion. The base ani-
mation is shown in red. The modified animations express Spreading Shape
with a constant anchor weight (blue), and with variable anchor weights
(green). Because waving has a wide range of arm movement, using constant
anchor weights causes dramatic changes in the base animation, modifying
its original curve and undermining its naturalness.

The calculation of attraction factors and weights is as follows:

NF(a, h, s) = 1
(AbsoluteMax(a, h, s)−AbsoluteMin(a, h, s)) ,

AF(a, h, m, s) = (max(dahm) −min(dahm)) · NF(a, h, s) ,

W(a, h, t, m, s) =
(

max(dahm)−dahm(t )
max(dahm)−min(dahm)

)
,

AFt (a, h, t, m, s) = W(a, h, t, m, s) · AF (a, h, m, s) ,

where NF(a, h, s) is the normalizing factor for the skeleton s per
anchor a and hand h. AbsoluteMax(a, h, s) and AbsoluteMin(a, h, s)
functions find the absolute maximum and minimum a-to-h distances
by projecting a line of arm length from the shoulder point of h away
from anchor a, and towards anchor a, respectively (see Figure 7).
AF(a, h, m, s) is the attraction factor for hand h towards anchor a for
motion m using skeleton s. It is a time-invariant factor that summa-
rizes the movement range of motion m. dahm is the array of a-to-h
distances for motionm, calculated per time step.W(a, h, t, m, s) is the
time-variant attraction weight of hand h towards anchor a at time t
for motion m using skeleton s, which is multiplied by AF(a, h, m, s)
to get the time-variant attraction factor AFt (a, h, t, m, s).
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AbsoluteM�n(a,h,s)
AbsoluteMax(a,h,s)

m�n(dahm)

max(dahm)
dahm(t)

a

h

Fig. 7. The distances in attraction weight calculations, assuming h is the left
hand, a is the left anchor, and the red arc is the path of the left hand during
the motion. We project the distances on a line for better visualization.

4.4.2 Movement Modifications by Laban Effort Parameters. We map
Laban Effort (LE) parameters into individual bone rotations that
are blended into the current pose. We use the LE-OCEAN mapping
introduced by Durupinar et al. [2017]. Because LMA concepts are
reproducible using different motion parameters [Durupinar et al.
2017], we introduce a different implementation of LE modifications.
We blend various bone rotations to add the impact of the Weight
and Space components to the posture. We change animation speed
dynamically to add the impact of the Time component, and we blend
small rotations for each bone based on Perlin noise to add the impact
of the Flow component.

The Space component reflects the inner attitude towards attention
to the environment. Indirect Space (-) has an affinity with Spreading
Shape, and Direct Space (+) has an affinity with Enclosing Shape.
Blended rotation axes and signs for this component are shown in
Table 4. We determine the rotation limits manually in a way that
looks natural. The blending factor is determined by the magnitude
of the Space parameter.

Table 4. The Space Effort rotation axes and signs. Bones on the right side
have the opposite sign of the corresponding bone on the left side.

Bone Rotation Axis Space − Space +

Left Shoulder Longitudinal + −

Left Shoulder Sagittal − +

Left Upper Arm Sagittal − +

Left Foot Longitudinal + −

Left Hand Longitudinal − +

Left Fingers Frontal + −

The Weight component reflects the gravitational force on the
body. Blended rotation axes and signs for this component are shown
in Table 5. Strong Weight (+) has a Sinking Shape, whereas Light
Weight (-) has a Rising Shape.

We change the speed of the animation in a non-uniform manner
to implement the Time Effort. We preprocess the base animation to
determine a rank per time step, based on the average displacement

Table 5. The Weight Effort rotation axes and signs. Bones on the right side
have the opposite sign of the corresponding bone on the left side.

Bone Rotation Axis Weight - Weight +

Spine Frontal − +

Neck Frontal − +

Left Shoulder Sagittal + −

Left Upper Leg Frontal + −

Left Lower Leg Frontal − +

of hands at that time step. During runtime, the animation speed is
modified based on the rank of the corresponding time step and the
Time Effort value. The usage of variable speeds helps changing the
movement speed in a more natural way.
As an example, consider a pointing gesture that starts and ends

with the same idle pose. The hand transitions into the pointing
position and stays still for a short time before returning to the
idle pose. A direct speed-up would shorten the pointing time, but
undermine realism. The preferred result is to make the transitional
motion quick, without drastically changing the pointing duration.
We preprocess the animationwith a constant sample rate to calculate
the average displacement of hands per step, following Algorithm 1.
We rank each step according to the average hand displacement and
map this to a speed factor. The speed factor is the highest for the
time step with the largest hand displacement and the lowest for the
one with the lowest hand displacement. The speed factor boundaries
are adjustable.

Algorithm1: Preprocessing for the animation speed update.
forall Base Animation A do

DisplacementArr = new Float[A.FrameCount-1];
for t = 1 to A.FrameCount do

dL = GetHandDisplacementBwFrames(t-1, t, A.LeftHand);
dR = GetHandDisplacementBwFrames(t-1, t, A.RightHand);
DisplacementArr[t] = (dL + dR ) / 2;

end
A.RankArr = new Integer[A.FrameCount-1];
for t = 1 to A.FrameCount do

A.RankArr[t] = GetRank(DisplacementArr[t]);
end

end

We set the animation speed, which is an internal Unity parameter,
during runtime using Algorithm 2. We determine the speed range
[MinSpeed: MaxSpeed] by the Time Effort parameter which is in
[−1, 1] range. For Time = −1, the speed range is [0.5 : 1]; and for
Time = 1, it is [1 : 2]. The resulting animation appears faster or
slower without breaking relative stops.

We add rotational fluctuations per bone using Perlin noise based
on the Flow Effort parameter to have a similar effect to the flourishes
in Durupinar et al. [2017]. Free Flow has maximum fluctuations,
indicating uncontrollability; whereas Bound Flow has no additional
rotational fluctuations. Figure 8 depicts the influence of Laban Effort
parameters on the agent’s body.
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Algorithm 2: Setting the animation speed at each frame.
A = GetCurrentBaseAnimation();
t = A.GetCurrentFrame();
rank = A.RankArr[t] ;
A.speed =Map rank from [1, A.FrameCount] to [MinSpeed,
MaxSpeed];

(a) Direct Space / Indirect Space (b) Light Weight / Strong Weight

(c) Bound Flow / Free Flow (d) Sustained Time / Sudden Time

Fig. 8. The influence of each Laban Effort modification. (a) Enclosing vs.
spreading motion for Direct vs. Indirect Space. (b) Rising vs. sinking motion
for Light vs. Strong Weight. (c) Constrained vs. fluctuating movements for
Bound vs. Free Flow. Figures show the superimposition of multiple frames
of a still motion. (d) Slow vs. fast movement for Sustained vs. Sudden Time.
Figures show the superimposition of multiple frames of a pointing motion.
The red dots illustrate the hand position captured at each time step. Because
Sustained Time has slow movement, it spans more frames than Sudden
Time.

For OCEAN-LE mapping, we use the mapping introduced by Du-
rupinar et al. [2017]. As for the OCEAN-LSQ mapping, no direct
mathematical link has been defined in the literature to the best of
our knowledge. Therefore, we follow an experimental approach
to quantize the OCEAN-LSQ link considering the descriptions of
Shape Qualities and hand movement in body language [Key 1975].
For example, an extravert tends to expose his/her hands more than
an introvert, this is why we associate positive extraversion with
Opening LSQ. LSQ parameters are calculated as a weighted sum of
OCEAN factors, using the weights in Table 6. All the movement and
personality parameters take values in the range [-1, 1]. Through per-
ceptual studies, we verified that the Shape adjustments contribute
to the perception of personality and improve the distinction of per-
sonality factors compared to solely using Effort-based modifications.
Please refer to Appendix C.3 for the experimental evaluation.

Table 6. OCEAN weights for LSQ

LSQ/Personality O C E A N
Rising .25 .25 .25 .25 .00
Spreading .30 .00 .70 .00 .00
Advancing .00 .00 .50 .00 .50

5 EXPERIMENTS

5.1 Experimental Setup
We performed perception studies on Mechanical Turk [Amazon
2018] to evaluate the amount of distinction between the two ex-
tremes of each personality trait, using incremental combinations
of personality expression modules. The system can express each
OCEAN factor on a scale and combine the influence of different
factors. However, we focus on singular factor changes with the ex-
treme values to keep the number of experiments at a manageable
size.

We performed two preliminary experiments to tune various sys-
tem parameters before the main experiment. The first preliminary
experiment is a user survey to select the most neutral looking char-
acter to prevent personality perception bias due to the appearance
of the 3D model. Please refer to Appendix C.1 for details. The sec-
ond one is another user study to test the effect of facial expressions
on the perception of personality and construct a link between the
two. To our knowledge, emotions have not been used as a direct
element to influence the perceived personality of a virtual character.
We provide the details in Appendix C.2 and use the results of the
experiment in our personality to facial expression mapping. In addi-
tion to the preliminary experiments, we ran two user studies to (1)
validate the Laban modifications for body motion and (2) evaluate
the naturalness of the agent in terms of its movement and speech.
The details are provided in Appendices C.3 and C.4.

We performed eight main experiments, wherein we tested the
same 3D agent model with different active communication channels.
Each main experiment assessed ten samples of the model endowed
with one OCEAN extreme at a time while the remaining factors
were set to neutral. All the ten samples of each experiment were
rated by 50 unique participants. We did not allow the participants
to take part in multiple experiments to avoid familiarity bias. Thus,
a total of 400 Turkers participated in the eight main experiments,
where non-overlapping sets of 50 Turkers rated all the ten samples of
each experiment. We conducted the main experiments in two stages.
The difference between the two stages is the presence/absence of
dialogue and voice. The first stage involved dialogue, where vocal
communication was active in all but one case, and the text was avail-
able in all. The second stage disabled both the text (dialogue) and
voice modules in order to keep the attention on body and face move-
ments. The second stage experiment samples were shorter, focusing
only on the key actions. We presented the samples in random order.
We ran the Passport Scenario, which covers the interaction between
a passport officer (the user representative) and a visitor (the agent)
always with the same scenario flow, except for the agent answers,
which were crafted to reflect the desired personality. We showed
the video of each conversation, expecting answers to personality
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statements about the agent on a 7-point Likert scale. We used the
Ten-Item Personality Inventory [Gosling et al. 2003] for the state-
ments, which were in the following structure: “This character looks
Extraverted and Enthusiastic”, with the underlined traits updated
depending on the personality type. Each sample and the accompa-
nying statements were displayed on the same page. For each sample,
we randomized agent names and occupations to make sure that they
would be perceived as different individuals. Participants were free
to view each sample as many times as they needed. We did not have
control over the setup where the participants performed the studies,
as they were run on Mechanical Turk. Participants were not able
to return to a sample after submitting their response. Providing de-
mographics was not mandatory. Among the 64% of all participants
who shared this information, 73.79% are male, 27.21% are female,
and the average age is 31.46± 7.64. The majority of the participants
are from India (43.14%), followed by USA (25.80%), Spain (14.11%),
and England (5.64%).

5.2 Models
Each main experiment involves a model with different active modal-
ities. Table 7 shows the active and inactive modules in each model,
and Figure 9 shows screenshots from each model in the first stage.

Table 7. Modules in each model. ‘+’ denotes active and ‘-’ denotes inactive.

Model Dialogue Voice Face Body

Base Model + - - -
Model V + + - -
Model VF + + + -
Model VB + + - +
Model VFB + + + +
Model F - - + -
Model B - - - +
Model FB - - + +

5.3 Results and Analysis
For each experiment, we performed Welch’s t-tests to compare the
means of the participant scores for positive and negative samples,
where the null hypothesis assumes no significant difference. Because
we made multiple comparisons, we adjusted the p-values to correct
Type 1 error using False Discovery Rate control [Benjamini and
Hochberg 1995].
Tables 8 and 9 show the mean differences between the scores of

positive and negative samples followed by the adjusted p-value of
each mean difference per OCEAN factor. The columns represent
the pairs of simulations with two personality poles and the models.
The magnitude of the difference indicates the clarity of the distinc-
tion between the positive and negative samples, demonstrating the
success of the modifications made for that personality trait. A small
p-value shows that the difference is not coincidental.

5.3.1 Perception of Individual OCEAN Factors. For openness, the
perception of the Models VB and VFB yield significant mean differ-
ences between the negative and positive extremes. Combining facial

(a) Positive Extraversion Sample (Base Model and Model V)

(b) Positive Extraversion Sample (Model VF)

(c) Negative Extraversion Sample (Model VF)

(d) Positive Extraversion Sample (Model VB)

(e) Negative Extraversion Sample (Model VB)

Fig. 9. Screenshots showing each model, excluding Model VFB which is
similar to Model VB, except that the facial expressions are as in Model VF,
rather than being neutral. Among the second stage experiments, Model F
is similar to Model VF, Model B is similar to Model VB and Model FB is
similar to Model VFB, excluding dialogue and voice.

expressions with movement cues slightly increases the distinction
factor– the mean difference is higher for VFB. However, we observe
that dialogue, voice, and body movement play the main role here,
as Model VF does not yield a significant difference by itself. In the
absence of dialogue and voice, none of the models achieve a signifi-
cant perceptual difference between the two extremes of openness,
alluding to the intellectual associations of this trait.

For conscientiousness, Models VF, VB, and VFB have significant
effects on helping distinguish the two extremes. The combination of
VF and VB seems to have an averaging effect on VFB. Individually,
Models V and FB have similar performance, suggesting that their
combination has an additive influence. Conscientiousness is best
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Table 8. OCEAN score difference and significance of this difference per model and target factor. ∆x represents the mean score difference (in terms of the
7 point likert-scale) between y+ and y− samples for each sample y ∈ {O ,C , E , A, N }, per dimension x ∈ {O ,C , E , A, N }, rounded to 2 decimals. ρx
represents the adjusted p-value for the significance of the difference between y+ and y− samples in terms of dimension x , rounded to 3 decimals. Columns
represent the two extreme samples of the dimension of interest. Sub-columns represent each model that is used in the experiments. Gray cells indicate
ρx < 0.05 with 1 ≤ ∆x < 2, blue cells indicate ρx ≤ 0.001 with 1 ≤ ∆x < 2, and green cells indicate ρx ≤ 0.001 with 2 ≤ ∆x .

Sample O+, O- Sample C+, C- Sample E+, E- Sample A+, A- Sample N+, N-
Base V VF VB VFB Base V VF VB VFB Base V VF VB VFB Base V VF VB VFB Base V VF VB VFB

∆O .47 .55 .85 1.16 1.53 .24 .12 -.06 .46 .56 -.14 .71 .85 1.20 1.32 .27 .20 .91 .67 .86 -.29 -.31 -.96 -.68 -1.19
ρO .002 .036 .001 .000 .000 .045 .002 .000 .000 .000 .204 .000 .000 .000 .000 .011 .016 .001 .000 .000 .939 .001 .000 .000 .000
∆C .37 .87 1.17 1.48 1.92 .38 .82 1.18 1.74 1.50 .03 .31 .61 .61 .73 .22 .58 .86 .98 1.54 -.56 -1.07 -1.88 -2.62 -2.74
ρC .193 .522 .775 .002 .003 .057 .002 .000 .000 .000 .562 .315 .478 .053 .002 .873 .167 .657 .030 .085 .016 .000 .035 .000 .000
∆E .14 1.39 1.17 2.00 2.63 .10 .19 .15 .44 .82 .16 .94 1.56 2.12 2.96 .12 .40 .66 .16 .66 -.45 -.59 -1.26 -1.15 -1.64
ρE .296 .004 .002 .000 .000 .826 .086 .004 .000 .000 .342 .003 .000 .000 .000 .241 .004 .001 .000 .000 .999 .242 .001 .002 .000
∆A .47 .68 1.14 1.03 1.71 -.03 .27 .09 .44 .37 .14 .66 .76 .86 1.01 .62 1.11 1.81 2.32 2.65 -.26 -.25 -.71 -.45 -.74
ρA .131 .353 .000 .002 .000 .203 .015 .009 .000 .000 .394 .054 .007 .561 .009 .009 .001 .000 .000 .000 .017 .000 .000 .000 .000
∆N -.01 -.88 -1.24 -1.11 -1.55 -.43 -.96 -.58 -1.35 -1.49 .00 -.22 -.84 -.78 -1.22 -.48 -1.14 -1.61 -2.01 -2.63 .58 1.05 2.04 2.14 2.76
ρN .093 .138 .001 .000 .000 .025 .002 .000 .000 .000 .033 .018 .000 .000 .000 .040 .253 .005 .028 .001 .013 .000 .000 .000 .000

Table 9. OCEAN score difference and significance of this difference per silent model and target factor. Please refer to Table 8 caption for details.

Sample O+, O- Sample C+, C- Sample E+, E- Sample A+, A- Sample N+, N-
B F FB B F FB B F FB B F FB B F FB

∆O .20 .47 .34 .04 .24 -.07 .12 1.14 .96 .45 1.34 .81 -.14 -.78 -.60
ρO .440 .069 .182 .870 .320 .794 .643 .000 .000 .084 .000 .001 .595 .005 .033
∆C .27 1.16 .71 .29 .63 .80 .15 .94 .36 .65 1.08 1.24 -.09 -1.29 -1.08
ρC .368 .000 .013 .315 .033 .004 .626 .000 .214 .016 .001 .000 .745 .000 .000
∆E .42 .01 .50 -.26 -.02 -.46 .82 1.31 1.95 .56 1.05 .98 -.17 -.86 -.88
ρE .130 .969 .067 .386 .946 .128 .006 .000 .000 .051 .001 .001 .585 .001 .003
∆A -.15 1.35 1.45 -.23 .49 .43 .40 1.11 1.00 .42 1.91 2.03 -.22 -.79 -1.11
ρA .625 .000 .000 .437 .118 .128 .207 .000 .001 .118 .000 .000 .434 .010 .000
∆N -.24 -1.83 -1.67 -.12 -.78 -1.16 -.52 -1.33 -.91 -.65 -1.85 -2.11 .31 1.99 2.30
ρN .465 .000 .000 .691 .009 .001 .089 .000 .005 .032 .000 .000 .318 .000 .000

distinguished by Model VB. Similar to openness, the absence of
dialogue and voice result in poor performance.
Extraversion is significantly distinguished from introversion us-

ing the models V, VB, VFB, F and FB, where VB and VFB perform
the best. Among all the OCEAN factors, extraversion is the best-
distinguished one from its opposite, with a mean difference of 2.96
using Model VFB. It is also the one that gains the most benefit from
combining facial expressions with body movement modifications.
Interestingly, for extraversion, although Model VB outperforms
Model VF, the exclusion of dialogue and voice makes Model F to
perform better than Model B. This is possibly due to the change
of focus between the two stages of experiments. The first stage
is longer, shifting viewers’ attention towards dialogue and body,
decreasing the influence of facial expressions.

The two poles of agreeableness can be distinguished significantly
using Models V, VF, VB, VFB, F, and FB. The best performing models
are VB, VFB, and FB. Using only body movement or dialogue is
not adequate to achieve significant differences in means. The best
distinguishable factor using Model V is agreeableness; namely, vocal
features contribute to the perception of agreeableness more than
the other personality traits. Despite the apparent influence of voice,
when dialogue and voice are excluded, Model FB still achieves a

large mean difference. This suggests that facial expressions and
vocal features may be substitutable for agreeableness.

Most of the models represent neuroticism well. Between neu-
roticism and stability, Models V, VF, VB, and VFB yield significant
mean differences, with Model V slightly less than the others. Among
these, Model VFB performs the best. When voice and dialogue are
enabled, body movement is as effective as facial expressions in ex-
pressing neuroticism. However, excluding the dialogue and voice
has a dramatic negative influence on the effect of body movement.

Some traits require longer exposure times so that the viewer can
assess their influence on perceived personality. Features such as
the dependability of conscientiousness and the adventurous nature
of openness can be hardly illustrated in short sequences. Behav-
ioral planning similar to Shvo et al. [2019] can be used to express
such traits through the scenario flow. Additionally, the second stage
experiments indicate that viewer attention is controlled by the ex-
istence of dialogue and voice, as well as the exposure duration. In
general, longer sequences with dialogue shift the attention towards
the agent’s body, whereas short sequences without dialogue keep
the focus on facial expressions, reducing the performance of body
movement modifications. Providing a reference point, such as com-
paring two agents, as in our movement modifications evaluation
(see Appendix C.3), increases the influence of body movement.
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5.3.2 Comparison of Models. We compare the results of the mod-
els by performing one-way ANalysis Of VAriance (ANOVA) with
Tukey Honestly Significant Difference (HSD) to reveal significant
differences for each OCEAN factor [Tukey 1949]. Tables 10 and 11
show the difference-in-differences (DID) in means of pairs of models,
which are based on positive and negative samples for each OCEAN
factor. Each value reports the improvement provided by the model
on the left over the model on the right. For example, Model VFB is
2.80 times more successful than Base Model for extraversion. Note
that we evaluate the dialogue-based and silent models separately
as they involve different experimental setups. The information in
these tables is also presented as graphs in Appendix D.

Table 10. The DID in means of the pairs of models for each OCEAN factor.
Bold values show significant differences (p < 0.05).

Model O C E A N

V - Base 0.08 0.44 0.78 0.49 0.47
VF - Base 0.38 0.80 1.40 1.19 1.46
VB - Base 0.69 1.36 1.96 1.70 1.56
VFB - Base 1.06 1.12 2.80 2.03 2.18
VF - V 0.30 0.36 0.62 0.70 0.99
VB - V 0.61 0.92 1.18 1.21 1.09
VFB - V 0.98 0.68 2.02 1.54 1.71
VB - VF 0.31 0.56 0.56 0.51 0.10
VFB - VF 0.68 0.32 1.40 0.84 0.72
VFB - VB 0.37 -0.24 0.84 0.33 0.62

Table 11. The DID in means of the pairs of silent models for each OCEAN
factor. Bold values show significant differences (p < 0.05).

Model O C E A N

F-B 0.27 0.34 0.49 1.49 1.68
FB-B 0.14 0.51 1.13 1.61 1.99
FB-F -0.13 0.17 0.64 0.12 0.31

In the dialogue-based experiments, combining facial expressions
with movement modifications works best for extraversion; probably
because each module adds non-overlapping features related to ex-
traversion. For instance, facial expressions project positive emotions
and sociability, whereas body movement conveys the energetic na-
ture of extraversion. We observe a similar effect on neuroticism.
Again, we can surmise that each modality contributes to a different
aspect of neuroticism expression.
Without dialogue and voice, the face becomes more important

than the body in expressing personality. This is demonstrated in
openness, agreeableness, and neuroticism. A combination of facial
expressions and body motion has clear advantages over only body
motion for extroversion, agreeableness, and neuroticism. However,
adding body motion to facial expressions yields no significant im-
provements over only adjusting facial expressions.

5.3.3 Correlation of OCEAN Factors. We observe correlations be-
tween the perception of different OCEAN factors in different models.
For instance, the modifications that focus on openness increase the
perception of extraversion. The adjustments to express conscien-
tiousness tend to be negatively correlated with the perception of
neuroticism. Such an outcome is expected because slower move-
ments convey conscientious behavior, which can be perceived as
calm and stable– an indicator of negative neuroticism. For the first
stage of experiments, where dialogue and voice are enabled, we
perform principal component analysis (PCA) for Models VF, VB,
and VFB to analyze the correlations. We ignore the Base Model and
Model V because they do not have enough separation. We apply
PCA to the models individually, where the population consists of
OCEAN scores of each sample rated by each participant. This results
in matrices of 500 rows (10 samples × 50 participants) and 5 columns
(each OCEAN factor) per model.

We use Kaiser-Meyer-Olkin (KMO) test [Dziuban and Shirkey
1974] as a measure to show the suitability of the data for PCA. KMO
greater than 0.7 is generally accepted as an adequate threshold for
factor analysis. Each principal component in Table 12 acts as a new
linearly uncorrelated dimension that captures some portion of the
variance. We specify the coefficients for each OCEAN factor per
principal component, suppressing values less than 0.3. The results
show that we can use three components to capture at least 80% of
the cumulative variance for models VF, VB, and VFB.

Table 12. PCA results for models VF, VB, and VFB. KMO shows Kaiser-
Meyer-Olkin test result, we suppress coefficients less than .3, and display
components that capture at least 80% of the cumulative variance (CVar).

Model VF VB VFB
Comp. PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

O 0.65 — 0.68 0.70 0.49 0.37 0.77 0.35 —
C 0.74 — -0.37 0.83 — -0.38 0.81 — -0.42
E 0.62 0.67 — 0.68 0.57 — 0.71 0.55 0.31
A 0.72 -0.53 — 0.72 -0.45 0.45 0.76 -0.39 0.45
N -0.83 — — -0.84 0.35 — -0.88 — —

CVar 50.71 66.80 81.40 57.14 75.52 86.56 62.43 75.92 86.63
KMO 0.752 0.747 0.810

Each positive OCEAN dimension except neuroticism has at least
one trait that has positive connotations in a general sense. For in-
stance, imagination (O), dependability (C), sociability (E), politeness
(A), and calmness (N-) are among the descriptive traits of the five
factors. We expect that people’s perception of personality is influ-
enced by a dimension that encapsulates the overall positiveness,
similar to the Big One in the literature [Musek 2007]. PC1 in all
models can be interpreted as this positiveness dimension, which
is exhibited the most in positive conscientiousness and negative
neuroticism.
We interpret PC2 as the dominant extraversion dimension. In

general, extraversion is the best-distinguished OCEAN factor. We
believe that this is due to the expanding and energetic behavior
that it encompasses. Other than extraversion, PC2 is correlated with
different factors in each model. In Model VF, it is not surprising that
PC2 is related to positive extraversion (happiness expression) and
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negative agreeableness (anger and disgust expressions) where strong
and energetic facial expressions emerge. In Model VB, extraversion
is coupled well with openness, similar to Smith and Neff [2017];
but also related to negative agreeableness and positive neuroticism.
The open posture of positive openness, extending limbs of high
extraversion, quick and angry movements of low agreeableness, and
rushed motion of high neuroticism all contribute to this energetic
behavior component. We believe that in Model VFB, the inclusion
of facial expressions helps distinguish whether the motion speed
signals energetic or anxious behavior.
PC3 yields a complementary output to PC2, with the common

correlation factor being negative conscientiousness across models.
In Model VF, it can be interpreted as a creativity dimension where
highly creative–a feature of positive openness–individuals gener-
ally express negative conscientiousness traits such as being less
organized [Feist 2019].
In Model VB, PC3 consists of negative conscientiousness, pos-

itive openness, and agreeableness. This result may be due to the
less bound and faster movements of negative conscientiousness.
In Model VFB, the additive influence of facial expressions for ex-
traversion and agreeableness may be responsible for the additional
variance. Again, more relaxed use of expressions such as smiling
may be indicators of a more carefree attitude, as seen in negative
conscientiousness. This carefree attitude would go well with the
cheerful nature of positive extraversion and forgiving mindset of
positive agreeableness, which would explain the correlation.
PCA on the second stage experiments reveals similar results

(Table 13). We exclude Model B since it yields KMO < 0.7. PC1
in both models expresses a similar Big One-like structure, where
extraversion is not dominant. PC2 again represents the dominant
extraversion dimension, coupled with negative conscientiousness in
Model FB. Interestingly, PC2 in Model F has no other contributing
factors. PC3 in Model F is similar to PC3 in Model VF, with openness
being less influential due to the exclusion of dialogue and voice. In
model FB, the order of negative conscientiousness and negative
agreeableness dimensions are switched, compared to Model VFB.
This can be explained by dialogue improving the distinction of
agreeableness. Overall, PCA results are very similar to the first
stage experiments, only with a reduced representation of openness
and agreeableness.

Table 13. PCA results for models F and FB, with similar setup as Table 12.

Model F FB
Comp. PC1 PC2 PC3 PC1 PC2 PC3

O 0.80 — 0.45 0.69 0.48 —
C 0.81 — -0.31 0.75 -0.35 0.45
E 0.50 0.83 — 0.47 0.78 —
A 0.82 — — 0.77 — -0.52
N -0.85 — — -0.84 0.31 —

Cvar 58.95 77.05 86.68 51.08 73.31 84.68
KMO 0.767 0.703

6 DISCUSSION
The experiments indicate that adding new modalities improves
personality perception, and the combination of all the modalities
performs the best. Although adding a new modality does not always
yield a statistically significant increase in the perceptual accuracy,
the overall effect is additive. There is only one exception where
the improvement slightly decreases when a new modality is added,
and that is for conscientiousness when body movement is added to
facial animation and voice. However, the amount of the decrease is
not statistically significant. When the communication channels are
all active, all the five personality factors show statistically signifi-
cant improvements over the baseline model, where personality is
expressed only through dialogue. Previous research also indicates
the effectiveness of multi-modal communication. For instance, Neff
et al. show that combining language variation and gesture parame-
ters improves the perception of extraversion [Neff et al. 2010] and
neuroticism [Neff et al. 2011] in conversational agents. In another
domain, for personality detection from videos of real people, com-
bining speech signals with hand and body movement descriptors
performs better than individual channels [Nguyen et al. 2013].
We verify that the users perceived the models as natural in a

survey described in Appendix C.4. The survey results suggest that
the users judged the speech based on the naturalness of body mo-
tion and facial expressions. The users reported a slight decrease in
naturalness when facial expressions and body movement modifi-
cations were combined; however, they generally agree that agent
movement, facial expression, and voice modifications are natural.

Although we can conclude that multi-modal communication im-
proves personality perception in general, there are some variations
across the contributions of different combinations depending on the
personality factor. For example, the combination of dialogue and
voice modules performs slightly better than using body and face
modules together for openness and conscientiousness. In contrast,
the body-face combination outperforms the dialogue-voice combi-
nation for the remaining factors. Thus, in systems where dialogue is
not prominent, such as crowd simulations, we expect extroversion,
agreeableness, and neuroticism to be conveyedmore effectively. This
is indeed backed by previous crowd simulation work [Durupinar
et al. 2011], where the recognition rates of these three factors are
higher than the rates of openness and conscientiousness.
Among the five factors, extraversion is distinguished the best,

followed by neuroticism and agreeableness. These three factors
are more expressive as they are related to social attitudes. In fact,
the markers for extraversion, neuroticism, and agreeableness are
found to be more consistent across different species [Gosling and
John 1999]. Openness and conscientiousness, on the other hand,
are related to the intellectual and long-term aspects of personal-
ity [Goldberg 1990]; and they are not distinguished as much. We
believe that capturing their cues would require exposure to the
agent in different contexts and for longer durations. Their especially
poor performance in the absence of dialogue implies the need for
contextual cues to represent them.

The results show that the modifications that focus on one OCEAN
factor also influence the perception of other OCEAN dimensions,
although they are considered orthogonal. Understanding the reason

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:14 • Sonlu et al.

behind these correlations requires further experiments, but one pos-
sible explanation is the limited number of movement modifications
to represent each factor. For instance, movement speed has different
interpretations for neuroticism and conscientiousness [Durupinar
et al. 2017], which we found to be inversely correlated. Suddenmove-
ments are perceived as erratic, and thus the agent looks neurotic.
At the same time, they imply carelessness, so observers associate
them with low conscientiousness. However, it is interesting to see
the same relationship between neuroticism and conscientiousness
when only the voice module is active. Several studies have iden-
tified two meta-traits above the five OCEAN dimensions through
subsequent factor analysis [Cieciuch and Strus 2017; DeYoung et al.
2002]. The two meta-traits group extraversion with openness, and
conscientiousness with agreeableness and neuroticism. These are
consistent with the correlations that we found. For example, Table 8
shows similar results for openness and extraversion, albeit with a
higher recognition rate for extraversion. On the other hand, there is
a clear distinction between extraversion and agreeableness, which
belong to different meta-traits.

7 CONCLUSION AND FUTURE RESEARCH
We combine various methods of personality expression in conversa-
tional virtual agents to create a multi-modal framework and evaluate
the individual and combined influence of different modalities on
personality perception. Body animation, facial expressions, voice
transformation, and dialogue content are used in cooperation to con-
vey the underlying psychological states of the agent to the user. The
user studies suggest that each additional module contributes to the
perception of personality, with the best performance achieved when
all the modules are active. Some limitations and future research
directions are as follows:
Real-time conversation with the agent: We performed the per-

ception studies using recordings of the agent in order to prevent
potential delays due to the external APIs. Using the current system,
there is a 2 to 6-second delay after the user’s speech until the agent
starts speaking. We hope to reduce this delay to an acceptable range
by using local speech generation and understanding techniques. In
the future, we plan to test the system with users directly interacting
with the agent through conversation. We expect direct interaction
to increase user engagement in the scenario and elicit more empa-
thy towards the agent. It would also be interesting to observe how
users adjust their conversation styles based on agent personality.
For instance, users might talk more politely to a highly agreeable
agent, tend to keep their conversation short with an introverted
agent, and be impatient with an unconscientious agent.

Personality-based automated style transfer for text: Currently, we
use handcrafted dialogue; however, injecting personality into neu-
tral sentences can provide richer dialogue. This would require large
data sets with sentences that have a similar meaning and different
personality scores for training. Having multiple units that focus
on singular text operations is a possible solution. For example, one
unit could be responsible for adding hesitation into text by a given
degree, another for adding surprise, and so on.

Data-driven approach: Using motion capture data with personal-
ity scores, a mapping between animation modification parameters

and personality can be defined. Similar to Ran et al. [2015] who
introduce an automated model to predict LMA qualities of recorded
motion, deep learning can be used to modify an animation based on
personality. Facial expression data can also be used to accompany
movement modifications.
A more sophisticated model for emotions: Emotions are currently

reflected as facial expressions that are customized based on the
agent’s dialogue sentences and personality. A more sophisticated
model involves agent emotions to be influenced by the different
aspects of communication with the user, such as acting defensively
against an angry user. An emotion model similar to Kasap et al.
[2009] can be utilized for this purpose. A complex emotion model
also entails the influence of personality. For example, a highly agree-
able agent would be expected to be more caring when the user
sounds sad, as opposed to a disagreeable agent that would not be
interested in cheering up the user. In addition, we currently limit the
communication of emotions to facial expressions. Although the link
between personality traits and body motion has been established in
the literature, we have little knowledge about how this link would
be affected when emotions are superimposed on personality. This
is a future research area that we aim to explore.

Interaction with multiple agents: Currently, the system focuses on
conversation with a single agent. It could be interesting to integrate
it into a simulation where multiple agents interact based on person-
ality. The goals and needs for each agent could be determined by a
model, and human players could train agent behavior.
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4
A SCENARIOS5

A.1 Introduction Scenario6

In this scenario, the user is asked to learn certain information about7
the agent including name, age, occupation, and the city agent lives8
in. We use a neutral outdoor scene setup for this scenario, and9
the upper body of the agent is visible to the user. The dialogue10
state machine of this scenario supports non-linear flows, as seen11
in Figure 1, yet the user could tend to follow a certain order. The12
user can end the conversation with a farewell at any time. Figure 213
shows still frames from the scenario.14

The name, age, occupation, and city of the agent are randomized15
at each execution. OCEAN Alternatives of agent Dialogue Units16
have a minimal distinction in this scenario, because the questions17
of the user are rather direct. An example Dialogue Unit (DU) with18
its OCEAN Alternatives is given in Table 1.

Fig. 1. The dialogue state machine of Introduction Scenario.

19

A.2 Fast-food Scenario20

In this scenario, the user takes the role of a customer, with the21
purpose to order some food by talking to the cashier agent, in a22

© 2020 Association for Computing Machinery.
0730-0301/2020/12-ART7 $15.00
https://doi.org/10.1145/3439795

Fig. 2. Still frames from Introduction Scenario. We use an unconscien-
tious agent (careless, negligent). White subtitles correspond to the agent’s
lines.

fast-food restaurant setup. We do not give specific information 23
about what to order to the user. We expect the user to ask what 24
food the restaurant serves before ordering. 25

Some products could be out of stock in this scenario. The cashier 26
asks whether the user wants a menu or the big selection when 27
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Table 1. Example OCEAN Alternatives for a DU from
Introduction Scenario

Type Text

DU “My name is (name).”

O (+) “I am known as (name).”

O (−) “I’m (name).”

C (+) “My name is (name).”

C (−) “Oh, well... My name is... (name).”

E (+) “I’m (name), my friend.”

E (−) “(name).”

A(+) “My name is (name), nice to meet you.”

A(−) “Why do you ask? It’s (name).”

N (+) “Um... I... I am (name).”

N (−) “My name is (name).”

Fig. 3. The dialogue state machine of Fast-food Scenario.

Fig. 4. Still frames from Fast-food Scenario. We use an extravert agent
(talkative, sociable). White subtitles correspond to agent’s lines.

it is applicable. At the end of the dialogue, the user has the op- 28
tion to pay with a credit card or cash. The scenario ends with the 29
cashier preparing the order. Figure 3 gives the dialogue state ma- 30
chine of this scenario and Figure 4 shows still frames from the 31
scenario. 32

A.3 Passport Scenario 33

In Passport Scenario, the user takes the role of a passport officer. 34
This scenario aims to question the visitor agent. Figure 5 shows the 35
dialogue state machine of this scenario. We use an airport setup for 36
this scenario, as seen in Figure 6. The agent’s passport information 37
includes visa and passport issue and expiration dates, and a visa 38
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type. To enter the country, the issue and expiration dates should be39
valid and the passenger’s purpose of visit should be appropriate to40
the visa type. We show a guiding message on the screen according41
to the current state to help the user assume the role, but the user42
does not have to follow the guide and could decide on the final43
decision independently. We guide the user to ask the occupation44
and return ticket of the visitor as well.

Fig. 5. The dialogue state machine of Passport Scenario.
45

Fig. 6. Still frames from Passport Scenario. We use an introvert agent
(quiet, reserved). White subtitles correspond to agent’s lines.
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B FACIAL SHAPE KEY WEIGHTS46

Table 2 contains the weights of the facial shape keys per emotion.47

Table 2. Emotion Weights for Facial Expression Keys

Key/Emotion Anger Disgust Sadness Surprise Happiness

Brows Down 1.00 0.50 0.00 0.00 0.00

Cheek Puff 0.02 0.00 0.00 0.00 0.00

Frown 0.40 0.10 0.80 0.00 0.00

Mouth Down 0.10 0.10 0.10 0.00 0.00

Mouth Narrow 0.20 0.00 0.00 0.20 0.00

Squint 0.30 0.30 0.10 0.00 0.40

Brows Up 0.00 0.00 0.10 1.00 0.30

Eyes Wide 0.00 0.00 0.00 0.80 0.00

Mouth Open 0.00 0.00 0.00 0.30 0.10

Smile 0.00 0.00 0.00 0.00 1.00

Brows Outer Lower 0.00 0.00 1.00 0.50 0.00

Brows In 0.00 0.00 0.10 0.00 0.00

Jaw Backward 0.00 0.00 0.10 0.00 0.00

Nose Scrunch 0.00 0.80 0.00 0.00 0.00

Mouth Up 0.00 0.10 0.00 0.00 0.00

Jaw Forward 0.00 0.10 0.00 0.00 0.00

Upper Lip Out 0.00 0.50 0.00 0.00 0.00

Upper Lip In 0.00 0.20 0.00 0.00 0.00

Mid Mouth 0.00 0.20 0.00 0.00 0.00

48

C ADDITIONAL EXPERIMENTS49

C.1 Neutral Agent Experiment50

To use an agent model with minimal personality bias in the main51
experiments, we asked 25 participants to rate ten 3D human mod-52
els manually created using Fuse [Adobe 2019]. These models,53
shown in Figure 7, were constructed using preset parts available54
in the software to give a distinct look per character. In this ex-55
periment, each sample is the image of a different agent. Using the56
same idle pose, we expect a slightly different mean OCEAN score57
for each 3D human model due to differences in appearance. Ideally,58
a neutral agent should have a score of 0.5 per OCEAN factor. We59
define the neutrality of an agent as60

N = 1 −
∑ |OCEAN − 0.5|

5
,

N = 1 being the agent with all neutral OCEAN factors. The re-61
sults of this experiment indicate that the agent in Figure 7(b)62
is perceived as the most neutral one, with an average score63
of N = 0.966, and the agent in Figure 7(e) is the least neutral,64
with an average score of N = 0.916. Figure 7 provides all agent65
images and their corresponding N values. Being found as the66
most neutral, the Figure 7(b) agent is used in the rest of the67
experiments.68

C.2 Facial Expression-Personality Experiment69

There are notable studies in cognitive science that investigate70
the relationship between facial expressions and personality. Al-71
though the literature is more interested in the influence of the72

Fig. 7. The 3D human models used in Agent Neutrality Experiment and
the corresponding neutrality means.

observer’s facial expression, various examples such as Todorov 73
et al. [2008] examine the correlation between the facial appear- 74
ance of a person and others’ inference of this person’s personality. 75
They measure trustworthiness (valence) and dominance (power) in 76
computer-generated faces, rather than using a personality model 77
such as OCEAN. They morph the whole face, thus the resulting 78
faces vary in terms of both facial expression and facial structure. 79
They also investigate the potential role of the amygdala in face 80
evaluation. 81

Knutson [1996] investigates how facial expressions of emo- 82
tion affect subjects’ interpersonal trait inferences with two 83
experiments. He concludes that facial expressions carry both 84
a target’s internal state, as well as interpersonal information. 85
Teijeiro-Mosquera et al. [2015] investigate the relation between 86
facial expression and OCEAN personality inference in video blogs 87
of real humans. 88

As these studies suggest, facial expressions influence person- 89
ality inference. However, to our knowledge, a mapping between 90
OCEAN personality and facial expression usage for virtual humans 91
has not been established. We perform this experiment to quantify 92
the relationship between facial expressions and the OCEAN per- 93
sonalities for virtual humans, where the expressiveness of the face 94
is limited. 95

We ran this study based on images of the most neutral agent 96
expressing different emotions. The agent’s facial expression was 97
set to neutral, happy, sad, angry, surprised, and disgusted in dif- 98
ferent samples. We showed the agent’s face as a close-up portrait 99
(see Figure 8). We preferred to use static images of the facial ex- 100
pressions for participants to focus on the expression itself rather 101
than the animation. Keeping the facial expression of the agent still 102
in animation would make it unnatural, and keeping it short would 103
not give the participant enough time to perceive it. 104

Each sample was rated by 100 distinct participants. Figure 9 105
depicts the normalized OCEAN score distribution graph of each 106
image. The scores of the neutral expression indicate a minor bias 107
in openness, extraversion and neuroticism, and significant bias in 108
conscientiousness. We take the neutral expression’s OCEAN score 109
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Fig. 8. The facial expressions for Facial Expression-Personality Experi-
ment.

Fig. 9. The OCEAN score distribution graphs of samples from Facial
Expression-Personality Experiment.

Table 3. The Differences in Means of Each Facial Expression and
Neutral Facial Expression

Factor Happy Sad Angry Surprised Disgusted

O 0.057 −0.121 −0.177 −0.089 −0.128

C 0.034 −0.128 −0.203 −0.180 −0.175

E 0.157 −0.130 0.037 −0.020 0.063

A 0.155 −0.033 −0.311 −0.152 −0.279

N −0.074 0.236 0.330 0.222 0.289

Statistically significant values with p < 0.05 are shown in bold.

as a base value and compare other expressions to the neutral ex- 110
pression to compensate for this bias. 111

Table 3 shows the differences in means of user responses for 112
each emotional expression and neutral expression per personality 113
factor. We observe the highest difference for happiness in extraver- 114
sion and agreeableness; for sadness in neuroticism and introver- 115
sion; for anger in disagreeableness and neuroticism; for surprise 116
in unconscientiousness and neuroticism; and for disgust in dis- 117
agreeableness and neuroticism. The results support our hypoth- 118
esis about facial expressions being influential on the perceived 119
personality. 120

Based on the statistically significant findings given in Table 3, 121
we define additive facial expression values for each OCEAN factor 122
extreme, included in the article. We determine the additive facial 123
expression values based on the statistically significant influences 124
of different facial expressions on each OCEAN factor. The sign 125
and magnitude of the influence in Table 3 is the primary deter- 126
minant. For differences of magnitudes higher than 0.3, 0.2, 0.1, and 127
0.05, we use the additive facial expression values of magnitudes 0.5, 128
0.35, 0.25, and 0.125, respectively, using the same sign. If there are 129
multiple facial expressions with the same sign, strongly associated 130
with an OCEAN extreme (i.e., with magnitude >0.2), we limit their 131
contribution to avoid unnatural blends. When an agent speaks, its 132
facial expression is updated based on its personality and the emo- 133
tion derived from the dialogue by IBM Watson NLP. For instance, 134
an agreeable personality increases happiness and decreases anger 135
and disgust values coming from the dialogue unit. The agent can 136
still express anger or disgust; however, the emotion value calcu- 137
lated using IBM Watson NLP should be high enough to surpass the 138
subtractive values, making agreeable agents less likely to express 139
negative emotions. 140

C.3 Evaluation of Body Movement Modification 141
Parameters 142

In our system, personality is conveyed through body motion via 143
Laban Effort (LE) factors and Laban Shape Qualities (LSQ). A map- 144
ping between LE and personality has been established in the liter- 145
ature [Durupinar et al. 2017], and we adopt the same mapping al- 146
though we represent the same Effort factors with different motion 147
parameters. This follows the premise of Durupinar et al. [2017], 148
because the idea behind using Laban parameters is to decouple 149
the implementation details of motion parameters from what they 150
represent. As for an association between LSQ and personality, we 151
hypothesize the correlations in Table 6 of the main article. 152
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Fig. 10. Introvert (left) and Extravert (right) agents using only LE adjust-
ments.

Fig. 11. Accuracy of the participants’ personality perception comparing
two opposite factors using only LE adjustments.

We performed Amazon Mechanical Turk [Amazon 2018] stud-153
ies to validate (1) our LE implementation and (2) the effective-154
ness of our personality-LSQ mapping (cf. Table 6, main article)155
on improving the perception of related personality factors. We156
showed the participants the videos of two side-by-side agents157
performing the same set of actions with different motion styles.158
We used the Ten-Item Personality Inventory [Gosling et al. 2003]159
to collect evaluations. For instance, the question assessing open-160
ness was formatted as: “Which character looks more open to161
new experiences & complex and less conventional & uncre-162
ative.” The participants were instructed to choose “Left,” “Equal,”163
or “Right” as their answer. The videos could be replayed as164
many times as desired. We randomized the left/right position-165
ing of the two agents. We collected 40 unique responses for each166
video.167

There was a total of 20 tasks, assessing three different settings.168
Participants were free to perform any number of tasks. There were169
68 unique participants with an average age of 29.30 ± 6.46. The170
majority of the participants were from India (42.64%), followed by171
the USA (29.41%) and Italy (5.88%).172

The first group of tasks compared two opposite personality fac-173
tors for each dimension, using only LE adjustments (see Figure 10).174

Results indicate the success of our LE implementation (see175
Figure 11). For each personality dimension, we counted the num-176
ber of responses for exact personality, opposite personality, and177
neutral answers. We assume the null hypothesis to be that the178

Fig. 12. Introvert (left) and Extravert (right) agents using both LE and LSQ
adjustments.

Fig. 13. Accuracy of the participants’ personality perception comparing
two opposite factors using both LE and LSQ adjustments.

Table 4. Paired t-test Results Comparing LE Adjustments to
LE + LSQ Adjustments

Factor
Accuracy

p-value
LE LE + LSQ Improvement

O 0.75 0.85 0.10 0.043
C 0.70 0.82 0.12 0.018

E 0.87 0.95 0.07 0.043

A 0.75 0.90 0.15 0.012

N 0.67 0.80 0.12 0.001

numbers of responses for the three options are distributed equally. 179
The results of the two-tailed t-tests yield that the ratio of expected 180
answers is significantly higher than the opposite and neutral an- 181
swers with p < 0.001. The best-distinguished factor is extraver- 182
sion, followed by openness, agreeableness, conscientiousness, and 183
neuroticism. 184

The second group of tasks compared two opposite personality 185
factors for each dimension using both LE and LSQ adjustments (see 186
Figure 12 ). 187

We followed the same approach to analyze the responses and 188
performed t-tests. The two-tailed p values for all the personality 189
factors are less than 0.001. Thus, the additional LSQ adjustments 190
significantly improve the performance, compared to using only LE 191
adjustments (see Figure 13). 192
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Fig. 14. Introvert (left image) and Extravert (right image) agents, in each
image the agent on left uses LE only, and the agent on right uses both LE
and LSQ.

Fig. 15. Rate of the participants that chose the agent with both LE and
LSQ adjustments over the agent with only LE adjustments, comparing the
same polarity for each positive and negative OCEAN factor.

Additionally, we report paired t-test results to compare the ef-193
fect of using only LE adjustments to using both LE and LSQ adjust-194
ments. Table 4 shows the improvement rate of the LSQ adjustments195
for each factor with p < 0.05.196

Finally, the third group of tasks displayed two side-by-side197
agents expressing the same personality factor, where one agent is198
animated with only LE adjustments and the other agent with both199
LE and LSQ adjustments (see Figure 14). The question format was200
the same, again asking the participant to select the agent that best201
represents the personality trait in question.202

Figure 15 shows the response counts and rates for the expected,203
neutral, and opposite answers. Assuming the null hypothesis to204
be the random selection of these three options, we counted the205
number of responses for each group and performed two-tailed206
t-tests. For all the factors except N-, the ratio of expected an-207
swers is significantly higher than the opposite and neutral answers208
(p < 0.001). The poor performance of N- is possibly because we209
constrained the IK weights for LSQ anchors to prevent self col-210
lisions. Self collisions are especially salient in Retreating motion;211
thus the weights are limited the most, decreasing the impact of LSQ212
modifications.213

C.4 Naturalness Assessment of Agent Movement and214
Speech215

We conducted a user survey to measure the naturalness of the216
agent in terms of its movement and speech for Models VF, VB, and217

Fig. 16. Mean naturalness scores per sample for Models VF, VB and VFB.
Scores are given on 7 point Likert-scale, 1 being the least natural and 7
being the most natural.

VFB. We gave a 7 point Likert-scale for statements “The move- 218
ments of this character feel natural” and “The speech of this char- 219
acter feels natural,” changing between 1 (disagree strongly) and 220
7 (agree strongly). 50 Amazon Mechanical Turk workers partici- 221
pated in the study. The mean scores for each sample are depicted 222
in Figure 16. 223

Although the speech of the agent remains unchanged, we see a 224
trend towards judging the speech based on the naturalness of the 225
movement. Facial expressions of the agent are perceived as more 226
natural than other modalities, and the inclusion of body movement 227
seems to have a negative effect. This may be due to some motion 228
modification artifacts that cause self-collisions. 229

D GRAPHS SUMMARIZING THE RESULTS 230

Figures 17 and 18 depict the mean differences between the scores 231
of positive and negative samples for each model and each silent 232
model, respectively. Higher values correspond to a better distinc- 233
tion of the opposite ends of the related OCEAN factor. 234
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Fig. 17. The comparison of different models for each OCEAN factor with differences in means of positive and negative samples (higher magnitude is better).

Fig. 18. The comparison of different silent models for each OCEAN factor with differences in means of positive and negative samples (higher is better).
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