CS 444 Operating Systems

Chapter 6 Deadlocks

J. Holly DeBlois

March 6, 2025

J. Holly DeBlois CS 444 Operating Systems March 6, 2025 1/28

Resources to be Shared

Hardware devices

@ Software resources

e A piece of information
o Database records

Preemptable
o RAM
@ Nonpreemptable
e Printer, tape drive

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Use a Semaphore to Protect Resources

@ One resource @ Two resources
typedef int semaphore; typedef int semaphore;
semaphore resource_1; semaphore resource_1;

semaphore resource_2;

void process_A(void) { void process_A(void) {
down(&resource_1); down(&resource_1);
use_resource_1(); down(&resource_2);
up(&resource_1); use_both_resources();
} up(&resource_2);
up(&resource_1);
}
(a) (®)

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

A Potential Deadlock

@ Deadlock-free @ A potential deadlock
typedef int semaphore;

semaphore resource_1; semaphore resource_1;

semaphore resource_2; semaphore resource_2;

void process_A(void) { void process_A(void) {
down(&resource_1); down(&resource_1);
down(&resource_2); down(&resource_2);
use_both_resources(); use_both_resources();
up(&resource_2); up(&resource_2);
up(&resource_1); up(&resource_1);

} }

void process_B(void) { void process_B(void) {
down(&resource_1); down(&resource_2);
down(&resource_2); down(&resource_1);
use_both_resources(); use_both_resources();
up(&resource_2); up(&resource_1);
up(&resource_1); up(&resource_2);

} }

(a) ®)

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Deadlock Definition

@ A set of processes is deadlocked if

@ Each process in the set is waiting for an event

@ That event can be caused only by another process in the set

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Conditions for Resource Deadlock

@ Four conditions must hold
@ Mutual exclusion

@ Hold and wait

© No preemption

@ Circular wait

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Resource Allocation Graph

@ Requesting a

@ Holding a resource @ Deadlock
resource
S
T u
R (®)
(a) (b) ()

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

An Example of Circular Wait

1. Arequests R

o @O ®O ©

4. Arequests S

5.Brequests T

 Goadonk Ié 7] 7]
(® @)

() (e)

e A, B, and C are in circular wait

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Holding Process B Back

@ Hold process B back to break up the cycle

1. Arequests R

s @O O ®» ® ©
4. C requests R

5. Areleases R

o deadiock Ié 7] a

(k) o (m) (n)

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Strategies for Dealing with Deadlocks

@ Ignore the problem — maybe it will go away

o The ostrich algorithm
o The current strategy used in most systems

@ Detection and recovery
o Let deadlocks occur, detect them, and take action
@ Dynamic avoidance
o Careful resource allocation
@ Prevention
e Structurally negating one of the four required conditions

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Deadlock Detection

@ A cycle extracted from the
@ A resource graph
graph

I
S
L—®

©—[sl~

@
@O—<—
<]
@—*H—ﬁ)
<]

J. Holly DeBlois

CS 444 Operating Systems March 6, 2025

DFS to Detect Deadlocks

©0

For each node N in the graph, perform these steps with N as the
current node

Initialize S to an empty stack and designate all edges as unmarked
Push the current node into S, check if the node appears in S twice

o If yes, the graph has a cycle (listed in S) and thus a deadlock
If the current node has any unmarked outgoing edges, go to step 4; if
not, go to step 5
Pick an unmarked outgoing edge, mark it and follow it to the new
current node; go to step 2
If this is initial node, the graph does not contain cycles and no
deadlocks. Otherwise, pop the node from S and go back to the
previous node

J. Holly DeBlois CS 444 Operating Systems March 6, 2025 12/28

When There Are Multiple Resources of Each Type

@ The previous deadlock detection algorithm works with the assumption
that there is just one resource of each type

@ Often a computer has multiple resources of each type

@ Use four data structures to support deadlock detection when multiple
resources are available

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Four Data Structures

Resources in existence Resources available
(E,,E, Eg .o Ep) (A A A . AL
Current allocation matrix Request matrix
€y Cp Gy - G Ryt Ry Ry -0 Ry
Cop Cpp Cyy 0 Gy R, 22 R " Roy
: Cm Cn.? Cna e lcnm Flm an F'na Y F'nm
Row n is current allocation Row 2 is what process 2 needs
to process n

J. Holly DeBlois CS 444 Operating Systems March 6, 2025 14 /28

Deadlock Detection Algorithm

© Look for an unmarked process P; for which the /-th row of R
(request) is less than or equal to A (available)

e This process can acquire all resources it needs for successful completion

@ If such a process is found, add the i-th row of C (current allocation)
to A, mark the process, go back to step 1

e Pretend this process has finished and releases its acquired resources
© If no such process exists, algorithm terminates
e The unmarked processes are in a deadlock

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

L\\\Q% ® «\O% © o
& o
Q b \Q‘ ’b'(\ '{b\'\ Qb @Q& ‘b‘(\Q *(b%
&"b‘ Q\O %0 Q)\\) &‘bQ Q\O %0 Q)\\\'
=(4 2 3 1) A=(2 1 0 0)
Current allocation matrix Request matrix
0 01 O 2 0 0 1
C=(2 0 0 1 R=|1 0 1 O
01 2 0 2 1 0 O

J. Holly DeBlois CS 444 Operating Systems March 6, 2025 16 /28

Recovery from Deadlock

Possible methods of recovery, although none are “attractive”:

Preemption
Rollback
o Checkpoints

Killing processes

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Resource Trajectories

B ® u (Both processes
finished)
Printer
I
Iz
le
t
Plotter '8 T
r 1
-
r s
1
1
1
O ——— A
p q l1 l2 I lg
Printer <———

—~—— > Plotter

@ Two processes make requests for printer and plotter

@ Avoid deadlock by following viable trajectories

J. Holly DeBlois CS 444 Operating Systems March 6, 2025 18 /28

Safe and Unsafe States

Has Max Has Max Has Max Has Max Has Max

319 319 319 319 319

B 2 4 B 4 4 B 0 - B 0 - B 0 -

2 7 2 7 2 7 7 7 0 -
Free:3 Free: 1 Free:5 Free: 0 Free:7

(@) (b) () (d) (e)

The state in (a) is safe because
Process B can get all it needs, finish, and release resources
Then process C can finish

Then process A can finish

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Safe and Unsafe States

Has Max Has Max Has Max Has Max

319 419 419 4 |9

Bl 2| 4 Bl 2| 4 B| 4| 4 B| bB| D

C 2 7 C 2 7 C 2 7 C 2 7
Free: 3 Free: 2 Free: 0 Free: 4

@ The state in (a) is safe

@ The state in (b) is not safe

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Banker's Algorithm for Single Resource

Has Max Has Max Has Max
A 0 6 A 1 6 A 1 6
B 0 5 B 1 5 B 2 5
C 0 4 C 2 4 C 2 4
Dlo| 7 D| 4|7 D| 4| 7
Free: 10 Free: 2 Free: 1
(a) (b) ()

@ The state in (a) is safe
@ The state in (b) is safe

@ The state in (c) is not safe

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Banker's Algorithm for Multiple Resources

& &
o b& & & @ P & & N
OO Q %'Q &Q) l(b’ OQ) Q (2 '(b
QT 0 QAT
3101 (1 Al1[1]0]0[E=(342)
P = (5322)
BJ]o|J1]0]O0 BlJo[1]1]2 A = (1020)
clp1f{1f|11]o cl3j1f({o0jo
DJ1[1]0]1 Djojo|1]0
EJO]jO|OfO E]J]2]1]1]O0
Resources assigned Resources still assigned

@ 2 tables: current allocation, future need

@ 3 vectors: total in existence E, present allocation P, available A

J. Holly DeBlois CS 444 Operating Systems March 6, 2025 22/28

Banker's Algorithm

© Look for a process S whose unmet resource needs are all smaller than
or equal to A
o If no such process exists, the system will eventually deadlock
@ Assume S requests all resources needed and finishes, mark S as
terminated, return its resources to the vector A
© Repeat steps 1 and 2 until

@ Either all processes are marked terminated (safe state)
@ Or no process is left whose resource needs can be met (deadlock)

J. Holly DeBlois CS 444 Operating Systems March 6, 2025 23/28

Deadlock Prevention

@ Assure that at least one of conditions is never satisfied
@ Mutual exclusion

© Hold and wait

© No Preemption

@ Circular wait

Condition Approach
Mutual exclusion | Spool everything
Hold and wait Request all resources initially
No preemption Take resources away
Circular wait Order resources numerically

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Prevent Circular Wait

1. Imagesetter e
2. Printer

3. Plotter
4. Tape drive : .
5. Blu-ray drive ' |

(@) (b)

@ Numerically ordered resources @ Request resources monotonically

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Communication Deadlock

@ Cooperation synchronization

o Send/receive acknowledgment
e Lost acknowledgment

@ Competition synchronization

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

Communication Deadlock

@ A deadlock in a network

/ Buffer Router
B
oooo | oooo
oooo oooo
A
\
C
oooo | oooo
oooo | oooo

J. Holly DeBlois CS 444 Operating Systems March 6, 2025

void process_A(void) {
acquire_lock(&resource_1);
while (try_lock(&resource_2) == FAIL) {
release_lock(&resource_1);
wait_fixed_time();
acquire_lock(&resource_1);

}

use_both_resources(); @ Processes are not strictly
release_lock(&resource _2); .
release_lock(&resource_1); blocked, but they are not going
} anywhere
void process_A(void) { @ Compete for process table
acquire_lock(&resource_2); entries
while (try_lock(&resource _1) == FAIL) {
release_lock(&resource_2); @ Compete for file table entries

wait_fixed_time();
acquire_lock(&resource_2);

use_both_resources();

release_lock(&resource_1);
release_lock(&resource_2);

J. Holly DeBlois CS 444 Operating Systems March 6, 2025 28/28

