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Resources to be Shared

Hardware devices

@ Software resources

e A piece of information
o Database records

Preemptable
o RAM
@ Nonpreemptable
e Printer, tape drive
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Use a Semaphore to Protect Resources

@ One resource @ Two resources
typedef int semaphore; typedef int semaphore;
semaphore resource_1; semaphore resource_1;

semaphore resource_2;

void process_A(void) { void process_A(void) {
down(&resource_1); down(&resource_1);
use_resource_1(); down(&resource_2);
up(&resource_1); use_both_resources( );
} up(&resource_2);
up(&resource_1);
}
(a) (®)
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A Potential Deadlock

@ Deadlock-free @ A potential deadlock
typedef int semaphore;

semaphore resource_1; semaphore resource_1;

semaphore resource_2; semaphore resource_2;

void process_A(void) { void process_A(void) {
down(&resource_1); down(&resource_1);
down(&resource_2); down(&resource_2);
use_both_resources( ); use_both_resources( );
up(&resource_2); up(&resource_2);
up(&resource_1); up(&resource_1);

} }

void process_B(void) { void process_B(void) {
down(&resource_1); down(&resource_2);
down(&resource_2); down(&resource_1);
use_both_resources( ); use_both_resources( );
up(&resource_2); up(&resource_1);
up(&resource_1); up(&resource_2);

} }

(a) ®)
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Deadlock Definition

@ A set of processes is deadlocked if

@ Each process in the set is waiting for an event

@ That event can be caused only by another process in the set
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Conditions for Resource Deadlock

@ Four conditions must hold
@ Mutual exclusion

@ Hold and wait

© No preemption

@ Circular wait
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Resource Allocation Graph

@ Requesting a

@ Holding a resource @ Deadlock
resource
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An Example of Circular Wait

1. Arequests R

o @O ®O ©

4. Arequests S

5.Brequests T
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e A, B, and C are in circular wait
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Holding Process B Back

@ Hold process B back to break up the cycle

1. Arequests R

s @O O ®» ® ©
4. C requests R

5. Areleases R

o deadiock Ié 7] a

(k) o (m) (n)
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Strategies for Dealing with Deadlocks

@ Ignore the problem — maybe it will go away

o The ostrich algorithm
o The current strategy used in most systems

@ Detection and recovery
o Let deadlocks occur, detect them, and take action
@ Dynamic avoidance
o Careful resource allocation
@ Prevention
e Structurally negating one of the four required conditions
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Deadlock Detection

@ A cycle extracted from the
@ A resource graph
graph
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DFS to Detect Deadlocks

©0

For each node N in the graph, perform these steps with N as the
current node

Initialize S to an empty stack and designate all edges as unmarked
Push the current node into S, check if the node appears in S twice

o If yes, the graph has a cycle (listed in S) and thus a deadlock
If the current node has any unmarked outgoing edges, go to step 4; if
not, go to step 5
Pick an unmarked outgoing edge, mark it and follow it to the new
current node; go to step 2
If this is initial node, the graph does not contain cycles and no
deadlocks. Otherwise, pop the node from S and go back to the
previous node
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When There Are Multiple Resources of Each Type

@ The previous deadlock detection algorithm works with the assumption
that there is just one resource of each type

@ Often a computer has multiple resources of each type

@ Use four data structures to support deadlock detection when multiple
resources are available
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Four Data Structures

Resources in existence Resources available
(E,,E, Eg .o Ep) (A A A . AL
Current allocation matrix Request matrix
€y Cp Gy - G Ryt Ry Ry -0 Ry
Cop Cpp Cyy 0 Gy R, 22 R " Roy
: Cm Cn.? Cna e lcnm Flm an F'na Y F'nm
Row n is current allocation Row 2 is what process 2 needs
to process n
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Deadlock Detection Algorithm

© Look for an unmarked process P; for which the /-th row of R
(request) is less than or equal to A (available)

e This process can acquire all resources it needs for successful completion

@ If such a process is found, add the i-th row of C (current allocation)
to A, mark the process, go back to step 1

e Pretend this process has finished and releases its acquired resources
© If no such process exists, algorithm terminates
e The unmarked processes are in a deadlock
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Recovery from Deadlock

Possible methods of recovery, although none are “attractive”:

Preemption
Rollback
o Checkpoints

Killing processes
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Resource Trajectories

B ® u (Both processes
finished)
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@ Two processes make requests for printer and plotter

@ Avoid deadlock by following viable trajectories
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Safe and Unsafe States

Has Max Has Max Has Max Has Max Has Max

319 319 319 319 319

B 2 4 B 4 4 B 0 - B 0 - B 0 -

2 7 2 7 2 7 7 7 0 -
Free:3 Free: 1 Free:5 Free: 0 Free:7

(@) (b) () (d) (e)

The state in (a) is safe because
Process B can get all it needs, finish, and release resources
Then process C can finish

Then process A can finish
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Safe and Unsafe States

Has Max Has Max Has Max Has Max

319 419 419 4 |9

Bl 2| 4 Bl 2| 4 B| 4| 4 B| bB| D

C 2 7 C 2 7 C 2 7 C 2 7
Free: 3 Free: 2 Free: 0 Free: 4

@ The state in (a) is safe

@ The state in (b) is not safe
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Banker's Algorithm for Single Resource

Has Max Has Max Has Max
A 0 6 A 1 6 A 1 6
B 0 5 B 1 5 B 2 5
C 0 4 C 2 4 C 2 4
Dlo| 7 D| 4|7 D| 4| 7
Free: 10 Free: 2 Free: 1
(a) (b) ()

@ The state in (a) is safe
@ The state in (b) is safe

@ The state in (c) is not safe
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Banker's Algorithm for Multiple Resources

& &
o b& & & @ P & & N
OO Q %'Q &Q) l(b’ OQ) Q (2 '(b
QT 0 QAT
3101 (1 Al1[1]0]0[E=(342)
P = (5322)
BJ]o|J1]0]O0 BlJo[1]1]2 A = (1020)
clp1f{1f|11]o cl3j1f({o0jo
DJ1[1]0]1 Djojo|1]0
EJO]jO|OfO E]J]2]1]1]O0
Resources assigned Resources still assigned

@ 2 tables: current allocation, future need

@ 3 vectors: total in existence E, present allocation P, available A
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Banker's Algorithm

© Look for a process S whose unmet resource needs are all smaller than
or equal to A
o If no such process exists, the system will eventually deadlock
@ Assume S requests all resources needed and finishes, mark S as
terminated, return its resources to the vector A
© Repeat steps 1 and 2 until

@ Either all processes are marked terminated (safe state)
@ Or no process is left whose resource needs can be met (deadlock)
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Deadlock Prevention

@ Assure that at least one of conditions is never satisfied
@ Mutual exclusion

© Hold and wait

© No Preemption

@ Circular wait

Condition Approach
Mutual exclusion | Spool everything
Hold and wait Request all resources initially
No preemption Take resources away
Circular wait Order resources numerically
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Prevent Circular Wait

1. Imagesetter e
2. Printer

3. Plotter
4. Tape drive : .
5. Blu-ray drive ' |

(@) (b)

@ Numerically ordered resources @ Request resources monotonically
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Communication Deadlock

@ Cooperation synchronization

o Send/receive acknowledgment
e Lost acknowledgment

@ Competition synchronization
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Communication Deadlock

@ A deadlock in a network

/ Buffer Router
B
oooo | oooo
oooo oooo
A
\
C
oooo | oooo
oooo | oooo
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void process_A(void) {
acquire_lock(&resource_1);
while (try_lock(&resource_2) == FAIL) {
release_lock(&resource_1);
wait_fixed_time();
acquire_lock(&resource_1);

}

use_both_resources( ); @ Processes are not strictly
release_lock(&resource _2); .
release_lock(&resource_1); blocked, but they are not going
} anywhere
void process_A(void) { @ Compete for process table
acquire_lock(&resource_2); entries
while (try_lock(&resource _1) == FAIL) {
release_lock(&resource_2); @ Compete for file table entries

wait_fixed_time();
acquire_lock(&resource_2);

use_both_resources( );

release_lock(&resource_1);
release_lock(&resource_2);
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