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Applications of Queueing Theory

Queueing analysis is applicable whenever there are

A population of customers
A service facility
A waiting line

Examples

Processes, CPU, READY queue
Customers, call center, waiting queue

Things we want to know

Waiting time in the queue
Service time
Response time (turnaround time)

Waiting time plus service time

Utilization of the service facility
Queue lengths
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Model Description

Customers arrive in a random fashion

The service facility has one or more servers

One customer per server at a time

Service time is also random
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Assumptions

Customer population is infinite

The inter-arrival time of customers is an independent and identically
distributed (iid) random variable

The service time for each customer is also iid

The length of the queue can be infinite or finite
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Review Probability and Statistics

A continuous random variable X can be described by

Either its distribution function F (x) — cumulative distribution
function, cdf

F (x) = Pr[X ≤ x ] F (−∞) = 0 F (∞) = 1

Or its density function f (x) — probability density function, pdf

f (x) =
d

dx
F (x) F (x) =

∫ x

−∞
f (y)dy

∫ ∞

−∞
f (y)dy = 1

For a discrete random variable, replace integration by summation
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Properties of Distributions

Mean of a continuous distribution

E[X ] = µx =

∫ ∞

−∞
xf (x)dx

Mean of a discrete distribution

E[X ] = µx =
∑
all k

kPr[X = k]

Second moment

E[X 2] =

∫ ∞

−∞
x2f (x)dx E[X 2] =

∑
all k

k2Pr[X = k]

Variance
V[X ] = E

[
(X − µx)

2
]
= E[X 2]− µ2

x
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The Exponential Distribution

λ > 0, the arrival rate

1/λ, the inter-arrival time

CDF
F (x) = 1− e−λx , x ≥ 0

PDF
f (x) = λe−λx

Mean

E[X ] =
1

λ
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The Exponential Distribution

CDF PDF
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Geometric Distribution

A discrete distribution

Bernoulli trials with success rate p

The probability to succeed at the k-th trial

Pr[X = k] = (1− p)k−1p, k = 1, 2, 3, . . .

Memoryless: the probability of success at the k-th trial is the same,
regardless of the value of k

Exponential distribution is the continuous version of geometric
distribution

J. Holly DeBlois CS 444 Operating Systems November 6, 2024 9 / 14



Exponential Distribution is Memoryless

Waiting for an event to happen

After the clock has started ticking

At any given moment, the probability that we need to wait for T
additional amount of time is the same, regardless of how long we have
been waiting
Random arrival

Memoryless

Assume b > a > 0, waiting for a, b, or (b − a) amounts of time
Pr[T > b|T > a] = Pr[T > b − a]

Geometric and exponential distributions are the only memoryless
distributions
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Kendall Notation for Queueing Systems

A/B/m/N S

A: the distribution of
inter-arrival time

B: the distribution of service
time

m: the number of servers

N: the length of the queue

Omitted if N is infinite

S: service discipline

Omitted if S is FIFO

The exponential distribution is
commonly used for the
inter-arrival and service time

Designated as M, Markov
process

The most simple queueing
system is M/M/1

Two exponential distributions,
with parameters λ and µ
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Steady State

After running for a long time, the system tends to reach a stable state

In general, it is possible to analytically calculate the properties of the
M/M/m systems at the steady state

A Markov chain has

A set of n states
An n × n matrix of probabilities of transitions from states to states

Example: Count the number of heads when tossing a coin repeatedly,
starting with 0, adding 1 for head, and subtracting 1 for tail; the
states are . . . ,−2,−1, 0, 1, 2, . . .

Memoryless: The probability to move from state X to state Y
depends on X only, independent of the state before X
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M/M/1 as a Markov Chain

The states are the numbers of customers in the system

The states k = 0, 1, 2, . . .

Pk(t): the probability of the system in state k at time t

At steady state, Pk = lim
t→∞

Pk(t)

dPk(t)

dt
= (λPk−1(t) + µPk+1(t))− (λPk(t) + µPk(t))

0 = µP1 − λP0

0 = λP0 + µP2 − λP1 − µP1

0 = λPk−1 + µPk+1 − λPk − µPk
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Solution of M/M/1 Steady State

Pk =

(
λ

µ

)k

P0

∞∑
k=0

Pk = 1

P0 = 1− λ

µ

Utilization is

1− P0 =
λ

µ
= ρ

Queue length is

N =
∞∑
k=0

kPk =
ρ

1− ρ
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