
CS 444 Operating Systems
POSIX Threads

J. Holly DeBlois

August 20, 2024

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 1 / 15



POSIX Threads

The POSIX thread tutorial at Lawrence Livermore National
Laboratory

https://hpc-tutorials.llnl.gov/posix/

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 2 / 15

https://hpc-tutorials.llnl.gov/posix/


Process and Threads

A main program (process) contains several procedures (threads)

These procedures can be scheduled to run simultaneously and
independently by the OS

A thread has its own independent control flow

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 3 / 15



Process and Thread Call Stacks

Process Process and two threads

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 4 / 15



A Thread Maintains Its Own Data

Stack pointer

Registers

Scheduling parameters

Set of pending and blocked signals

Thread specific data

Light weight — see the table comparing timing results of fork() and
pthread create()

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 5 / 15



Advantages

In addition to being light weight, threads have the following
advantages

Overlap CPU work with I/O work

Better scheduling, priority or real-time

Asynchronous event handling

On an SMP machine

MPI communication involves memory copy, process to process
Pthread uses cache-to-CPU or RAM-to-CPU
See the table comparing MPI and Pthread memory bandwidths

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 6 / 15



Some Tasks Can Be Overlapped

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 7 / 15



Typical Models of Multithread Programs

Manager/worker

The manager thread assigns work to worker threads
The manager handles all I/O
The worker threads can be static or dynamic

Pipeline

Peer

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 8 / 15



Shared Memory Model

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 9 / 15



Thread Safety

A library function is thread-safe if it can be called by multiple threads
simultaneously

drand48() is not thread-safe

drand48 r() is thread-safe

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 10 / 15



Pthread API

gcc -pthread file.c, or g++ -pthread file.cpp

#include <pthread.h>

Thread management

Mutex

Condition variable

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 11 / 15



Thread Management

pthread create()

pthread exit()

pthread attr init()

pthread attr setdetachstate()

pthread attr destroy()

pthread join()

Stack management

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 12 / 15



Mutex

pthread mutex t myMutex;

pthread mutex init()

pthread mutex destroy()

pthread mutex lock()

pthread mutex unlock()

Example: innerProduct.c

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 13 / 15



You Must Acquire Mutexes in a Fixed Sequence

#define N 100

typedef int semaphore;

semaphore mutex = 1;

semaphore empty = N;

semaphore full = 0;

void producer(void){

int item;

while (1) {

item = produceItem();

down(&empty);

down(&mutex);

insertItem(item);

up(&mutex);

up(&full);

}

}

void consumer(void){

int item;

while (1) {

down(&full);

down(&mutex);

item = removeItem();

up(&mutex);

up(&empty);

item = consumeItem();

}

}

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 14 / 15



Condition Variable

Thread A

pthread_mutex_lock(&mtx);

...

if (condition)

pthread_cond_signal(&cv);

//pthread_cond_broadcast()

...

pthread_mutex_unlock(&mtx);

Thread B

pthread_mutex_lock(&mtx);

...

if (!condition)

pthread_cond_wait(&cv,

&mtx);

...

pthread_mutex_unlock(&mtx);

J. Holly DeBlois CS 444 Operating Systems August 20, 2024 15 / 15


