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Figure 11-1. Major releases in the history of Microsoft operating 
systems for desktop PCs. 

History of Vista 
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Figure 11-2. DEC Operating Systems developed by Dave Cutler. 

2000s: NT-based Windows (1) 
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Figure 11-3. The Win32 API allows programs to run  
on almost all versions of Windows. 

2000s: NT-based Windows (2) 
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Figure 11-4. Split client and server releases of Windows. 

2000s: NT-based Windows (3) 
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Figure 11-5. Comparison of lines of code for selected  
kernel-mode modules in Linux and Windows (from Mark 
Russinovich, co-author of Microsoft Windows Internals). 

Windows Vista 
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Figure 11-6. The programming layers in Windows. 

Programming Windows Vista 
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Figure 11-7. The components used to build NT subsystems. 

Programming Windows Vista (2) 
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Figure 11-8. Common categories of kernel-mode object types. 

The Native NT Application  
Programming Interface (1) 
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Figure 11-9. Examples of native NT API calls that use handles to 
manipulate objects across process boundaries. 

The Native NT Application  
Programming Interface (2) 
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Figure 11-10. Examples of Win32 API calls and the  
native NT API calls that they wrap. 

The Win32 Application  
Programming Interface 
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Figure 11-11. The registry hives in Windows Vista. HKLM is a 
short-hand for HKEY_LOCAL_MACHINE. 

The Windows Registry (1) 
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Figure 11-12. Some of the Win32 API calls for using the registry 

The Windows Registry (2) 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 



Figure 11-13. Windows kernel-mode organization. 

Operating System Structure 
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Figure 11-14. Some of the hardware functions the HAL manages. 

The Kernel Layer 
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Figure 11-15. dispatcher_header data structure embedded in 
many executive objects (dispatcher objects). 

Dispatcher Objects 
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Figure 11-16. Simplified depiction of device stacks for two NTFS 
file volumes. I/O request packet passed from down the stack.  

The Device Drivers 
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Figure 11-17. The structure of an executive object 
managed by the object manager. 

Implementation of the Object Manager 
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Figure 11-18. Handle table data structures for a minimal 
table using a single page for up to 512 handles. 

Handles (1) 
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Figure 11-19. Handle table data structures for a  
maximal table of up to 16 million handles. 

Handles (2) 
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Figure 11-20. The object procedures supplied  
when specifying a new object type. 

The Object Name Space (1) 
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Figure 11-21. Some typical directories in the object name space. 

The Object Name Space (2) 
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Figure 11-22. I/O and object manager steps for  
creating/opening a file and getting back a file handle. 

The Object Name Space (3) 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 



Figure 11-23. Some common executive object types  
managed by object manager. 

The Object Name Space (4) 
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Figure 11-24. The relationship between jobs, processes, threads 
and fibers. Jobs and fibers are optional; not all processes are 

in jobs or contain fibers. 

Processes and Threads in Windows Vista (1) 
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Figure 11-25. Basic concepts used for CPU  
and resource management. 

Processes and Threads in Windows Vista (2) 
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Job, Process, Thread, and Fiber 
Management API Calls (1) 

• Actual search path for finding program to execute buried in 
library code for Win32, but managed more explicitly in UNIX. 
 

• Current working directory is kernel-mode concept in UNIX but 
user-mode string in Windows.  
 

• UNIX parses command line and passes an array of 
parameters, Win32 leaves argument parsing up to individual 
program. 
 

• Whether file descriptors can be inherited in UNIX is property of 
handle. In Windows it is property of both handle and parameter 
to process creation. 
 

• Win32 is GUI-oriented, new processes directly passed 
information about their primary window 
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Job, Process, Thread, and Fiber 
Management API Calls (2) 

• Windows has no SETUID bit as  property of 
executable, one process can create a process 
that runs as a different user, as long as it can 
obtain a token with that user’s credentials. 

• Process and thread handle returned from 
Windows can be used to modify the new 
process/thread in many substantive ways.  
UNIX just makes modifications to new process 
between fork and exec calls. 
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Figure 11-26. Some of the Win32 calls for  
managing processes, threads, and fibers. 

Synchronization 
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Scheduling (1) 

The following conditions cause the currently 
running thread to execute the scheduler code: 

 
• The currently running thread blocks on a semaphore, 

mutex, event, I/O, etc. 
• The thread signals an object (e.g., does an up on a 

semaphore or causes an event to be signaled). 
• The quantum expires. 
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Scheduling (2) 

The scheduler is also called under two other 
conditions: 

 
• An I/O operation completes. 
• A timed wait expires. 
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Figure 11-27. Mapping of Win32 priorities to Windows priorities. 

Scheduling (3) 
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Figure 11-28. Windows Vista supports 32 priorities for threads. 

Scheduling (4) 
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Figure 11-29. An example of priority inversion. 

Scheduling (5) 
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Memory Management(1) 
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Figure 11-30. Virtual address space layout for three user 
processes on the x86. The white areas are private per 
process. The shaded areas are shared among all processes. 



Figure 11-30. Virtual address space layout for three user 
processes on the x86. The white areas are private per 
process. The shaded areas are shared among all 
processes. 

Memory Management (2) 
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Figure 11-30. Virtual address space layout for three user 
processes on the x86. The white areas are private per 
process. The shaded areas are shared among all processes. 

Memory Management (3) 
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Figure 11-31. The principal Win32 API functions  
for managing virtual memory in Windows. 

Addressing Large Physical Memories 
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Figure 11-32. Mapped regions with their shadow pages on disk. 
The lib.dll file mapped into two address spaces at same time. 

Implementation of Memory Management 
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Figure 11-33. A page table entry (PTE) for a mapped page on the 
(a) Intel x86 and (b) AMD x64 architectures. 

Page Fault Handling (1) 
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Page Fault Handling (2) 

Each page fault can be considered as being in one 
of five categories: 

 
• The page referenced is not committed. 
• Attempted access to a page in violation of the 

permissions. 
• A shared copy-on-write page was about to be 

modified. 
• The stack needs to grow. 
• The page referenced is committed but not currently 

mapped in. 
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Figure 11-34. Windows self-map entry used to map the physical 
pages of page tables and page directory into kernel virtual 

addresses, for the x86. 

Page Fault Handling (3) 
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The Page Replacement Algorithm 

• Three levels of activity by the working-set 
manager 

 
• Periodic based on a timer 

 
New activity is added at each level: 
• Lots of memory available 
• Memory getting tight 
• Memory is tight 
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Figure 11-35. Some of the major fields in the  
page frame database for a valid page. 

Physical Memory Management (1) 
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Figure 11-36. The various page lists and the  
transitions between them. 

Physical Memory Management (2) 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 



Figure 11-37. Native NT API calls for performing I/O. 

Input/Output API Calls 
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Figure 11-38. A single level in a device stack. 

Device Drivers 
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Figure 11-39. The major fields of an I/O Request Packet. 

I/O Request Packets 
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Figure 11-40. Windows allows drivers to be stacked to work 
with a specific instance of a device. The stacking is 
represented by device objects. 

Device Stacks 
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Figure 11-41. The NTFS master file table. 

File System Structure (1) 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 



Figure 11-42. The attributes used in MFT records. 

File System Structure (2) 
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Figure 11-43. An MFT record for a three-run, nine-block stream. 

Storage Allocation (1) 
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Figure 11-44. A file that requires three MFT  
records to store all its runs. 

Storage Allocation (2) 
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Figure 11-45. The MFT record for a small directory. 

Storage Allocation (3) 
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Figure 11-46. (a) An example of a 48-block file being  
compressed to 32 blocks. (b) The MFT  
record for the file after compression. 

File Compression 
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Security in Windows Vista (1) 

Security properties inherited from the original 
security design of NT: 

 
• Secure login with anti-spoofing measures. 
• Discretionary access controls. 
• Privileged access controls. 
• Address space protection per process. 
• New pages must be zeroed before being mapped in. 
• Security auditing. 
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Figure 11-47. Structure of an access token. 

Security in Windows Vista (2) 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 



Figure 11-48. An example security descriptor for a file. 

Security in Windows Vista (3) 
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Figure 11-49. The principal Win32 API functions for security. 

Security API Calls 
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