MODERN OPERATING SYSTEMS
Third Edition

ANDREW S. TANENBAUM

Chapter 11
Case Study 2: Windows Vista

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

History of Vista

Year MS-DOS MS-DOS-based NT-based Notes

Windows Windows
1981 | MS-DOS 1.0 Initial release for IBM PC
1983 | MS-DOS 2.0 Support for PC/XT
1984 | MS-DOS 3.0 Support for PC/AT
1990 Windows 3.0 Ten million copies in 2 years
1991 | MS-DOS 5.0 Added memory management
1992 Windows 3.1 Runs only on 286 and later
1993 Windows NT 3.1
1995 | MS-DOS 7.0 | Windows 95 MS-DOS embedded in Win 95
1996 Windows NT 4.0
1998 Windows 98
2000 | MS-DOS 8.0 | Windows Me Windows 2000 Win Me was inferior to Win 98
2001 Windows XP Replaced Windows 98
2006 Windows Vista

Figure 11-1. Major releases in the history of Microsoft operating
systems for desktop PCs.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

2000s: NT-based Windows (1)

Year < DEC operating system Characteristics

1973 RSX-11M ' 16-bit, multi-user, real-time, swapping
_19?8 - VAXNMS - 32-bit, virtual memory

1987 | VAXELAN ' Real-time

_1988 - PRISM/Mica - Canceled in favor of MIPS/Ultrix

Figure 11-2. DEC Operating Systems developed by Dave Cutler.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

2000s: NT-based Windows (2)

@32 application png

Win32 application programming interface

Win32s

Windows Windows

Windows 3.x 95/98/98SE/Me NT/2000/XP/ Vista

Figure 11-3. The WIin32 API allows programs to run
on almost all versions of Windows.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

2000s: NT-based Windows (3)

1996
1999
2001

Year |

. Client version |
| Windows NT |
Windows 2000

. Windows XP |

2006 ' Windows Vista |

Year :
| 1996

1999

| 2003
2007 |

Server version

| Windows NT Server

Windows 2000 Server

Windows Server 2003

Windows Server 2008

Figure 11-4. Split client and server releases of Windows.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Windows Vista

Kernel area Linux Vista
CPU Scheduler 50,000 75,000
|/O infrastructure | 45,000 60,000
Virtual Memory 25,000 | 175,000

Figure 11-5. Comparison of lines of code for selected
kernel-mode modules in Linux and Windows (from Mark
Russinovich, co-author of Microsoft Windows Internals).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Programming Windows Vista

Applets (small Win32 executables)
NT services: GUI (shell32.dll, user3d2.dll, gdi32.dll)
Smss, Isass, Dynamic Libraries (ole32.dll, pedll, ...)
services, winlogon, Subsystem process
Subsystem API (kernel32.dl, advapi32l.dll) (csrss)
Native NT API,C/C++ run-time (ntdll.dll)

User-mode

Kernel-mode NTOS kernel layer (ntoskrnl.exe)

GUI driver
(Win32k.sys)

Drivers: devices,

: NTOS executive layer (ntoskrnl.exe)
file systems, network

Hardware abstraction layer (hal.dll)

Figure 11-6. The programming layers in Windows.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Programming Windows Vista (2)

Program process

Y

Subsystem
libraries

Y Y

Subsystem run-time library
(CreateProcess hook) Subsystem process

Native NT API,C/C++ run-time

User-mode
Kernel-mode
Subsystem
Y Local procedure kernel support
Native NT call (LPC)
system services NTOS Executive

Figure 11-7. The components used to build NT subsystems.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Native NT Application
Programming Interface (1)

Object category Examples

Synchronization Semaphores, mutexes, events, IPC ports, I/O completion queues
I/O Files, devices, drivers, timers

Program Jobs, processes, threads, sections, tokens

Win32 GUI Desktops, application callbacks

Figure 11-8. Common categories of kernel-mode object types.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Native NT Application
Programming Interface (2)

NtCreateProcess(&ProcHandle, Access, SectionHandle, DebugPortHandle, ExceptPortHandle, ...)
_NtCreateThread{&ThreadHandle, ProcHandle, Access, ThreadContext, CreateSuspended, ...)
_NtAIIocateVirtualMemory(ProeHandle, Addr, Size, Type, Protection, ...)
_NtMapViewOfSEction(SectHandIe, ProcHandle, Addr, Size, Protection, ...)
_NtFieadVirtualMemory(F’rocHandle, Addr, Size, ...)

_NtWriteVirtuaIMemory(PmcHandle, Addr, Size, ...)

_NtCreateFiIe{&FiIeHandIe, FileNameDescriptor, Access, ...)

_NtDuplicateObject(srcF’rocHandIe, srcObjHandle, dstProcHandle, dstObjHandle, ...)

Figure 11-9. Examples of native NT API calls that use handles to
manipulate objects across process boundaries.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The WIin32 Application
Programming Interface

Win32 call J. Native NT API call
_CreateProcess ~ NtCreateProcess
_CreateThread NtCreate Thread
_SuspendThread | NtSuspendThread
_CreatESEmaphore NtCreateSemaphore
'ReadFile NtReadFile
j]eleteFile | NtSetinformationFile

__CreateFiIeMapping NtCreateSection

VirtualAlloc NtAllocateVirtualMemory
‘MapViewOfFile = NtMapViewOfSection
_buplicateHandle NtDuplicateObject
_CloseHandle - NtClose

Figure 11-10. Examples of Win32 API calls and the
native NT API calls that they wrap.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Windows Registry (1)

Hive file . Mounted name | Use

'SYSTEM - HKLM TEM . OS configuration information, used by kernel
_HARDWARE HKLM DWARE In-memory hive recording hardware detected
BCD .~ HKLM BCD* ' Boot Configuration Database

_SAM | HKLM | Local user account information

_SECUF{ITY | HKLM URITY | Isass’ account and other security information
_DEFAULT HKEY USERS .DEFAULT Default hive for new users

_NTUSEF{.DAT HKEY_USERS <user id> User-specific hive, kept in home directory
'SOFTWARE HKLM TWARE Application classes registered by COM

_COM PONENTS | HKLMNENTS ' Manifests and dependencies for sys. components

Figure 11-11. The registry hives in Windows Vista. HKLM is a
short-hand for HKEY LOCAL MACHINE.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Windows Registry (2)

Win32 API function Description

RegCreateKeyEx Create a new registry key

RegDeleteKey Delete a registry key

RegOpenKeyEXx Open a key to get a handle to it

RegEnumKeyEx Enumerate the subkeys subordinate to the key of the handle
RegQueryValueEx Look up the data for a value within a key

Figure 11-12. Some of the Win32 API calls for using the registry

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Operating System Structure

User-mode System Library Kernel User-mode Dispatch Routines (ntdil.dll)

Kernel-mode
NTOS Trap/exception/interrupt dispatch
Kernel
layer CPU scheduling and synchronization: threads, ISRs, DPCs, APCs

Drivers Procs and threads || Virtual memory || Object manager || Config manager
file systems,
volume manager, . .
TCP/IP stack, LPC Cache manager I/O manager Security monitor
net interfaces . e b
graphics devices, executive run-time library
all other devices NTOS Executive layer
Hardware Abstraction Layer
Hardware CPU, MMU, Interrupt Controllers, Memory, Physical Devices, BIOS

Figure 11-13. Windows kernel-mode organization.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Kernel Layer

Device Device Spin
registers addresses Interrupts DMA Timers locks BIOS

RAM

KDY EAX ABC
ADC EAX BAX
EME LABEL

| |

| |

| |

| |

| |

| | WO EAX, ABIC
WMDY EAX ABC

| | ENE LABEL
MOVE A3 ABC

| | ADC EAY,BAX
EHE LABEL

| |

| |

| |

| |

| |

| |

g =i
2\ -

Hardware abstraction layer

Figure 11-14. Some of the hardware functions the HAL manages.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Executive
object

Dispatcher Objects

Object header

Notification/Synchronization flag

Signaled state

List head for waiting threads

> DISPATCHER_HEADER

Object-specific data

Figure 11-15. d/spatcher header data structure embedded in

many executive objects (dispaicher objects).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

IRP

The Device Drivers

—

1O manager

\

C: File System Filter

File system filter driver

A

D: File system filter

L

F

C: File System Filter

File system filter Driver

D: File system filter

¥

C: File System

MNTFES driver

D: File system IRP

¥

C: Volume

Volume manager driver

D: Volume

L

¥

C: Disk Class device

Disk class driver

D: Disk class device

¥

C: Disk partition(s)

Disk mini-port driver

D: Disk partition(s)

\

Device stack
consisting of device
objects for C:

\ J

“\T/
Each device chject
links to a driver

object with function
entry points

N J

Y4

]
Device stack
consisting of device
objects for D:

Figure 11-16. Simplified depiction of device stacks for two NTFS
file volumes. I/O request packet passed from down the stack.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Implementation of the Object Manager

Object name

Directory in which the object lives

Object Security information (which can use object)
header Quota charges (cost to use the object)

List of processes with handles

Reference counts

Pointer to the type object —

A

Type name
Access types
Access rights
Quota charges

: Synchronizable?
Object ; -
d EJI‘ta Object-specific data Pageable

Open method

Close method
Delete method

— Query name method
Parse method
Security method

Figure 11-17. The structure of an executive object
managed by the object manager.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Handles (1)

Handle table

descriptor A: Handle table entries [512]
Table pointer >
l > Object
— Object
Object

Figure 11-18. Handle table data structures for a minimal
table using a single page for up to 512 handles.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Handles (2)

Handle Table
Descriptor D: Handle table pointers [32]

Table pointer >

_ | _

B: Handle table pointers [1024]
- E: Handle table pointers [1024]
— >

A: Handle table entries [512J]
- F:Handle table entries [512]

I > Object i
Y —- Object

Object

C:Handle Table Entries [512]

Y

Figure 11-19. Handle table data structures for a
maximal table of up to 16 million handles.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Object Name Space (1)

Procedure When called Notes

Open For every new handle Rarely used

Parse For object types that extend the namespace | Used for files and registry keys
Close At last handle close Clean up visible side effects
Delete At last pointer dereference Object is about to be deleted
Security Get or set object’s security descriptor Protection

QueryName | Get object’'s name Rarely used outside kernel

Figure 11-20. The object procedures supplied
when specifying a new object type.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Object Name Space (2)

Directory Contents
?7? Starting place for looking up MS-DOS devices like C:
DosDevices Official name of ?7?, but really just a symbolic link to ??
Device All discovered |/O devices
Driver Objects corresponding to each loaded device driver
ObjectTypes The type objects such as those listed in Fig. 11-22
Windows Obijects for sending messages to all the Win32 GUI windows
BaseNamedObjects User-created Win32 objects such as semaphores, mutexes, etc.
Archname Partition names discovered by the boot loader
NLS National Language Support objects
FileSystem File system driver objects and file system recognizer objects
Security Objects belonging to the security system
KnownDLLs Key shared libraries that are opened early and held open

Figure 11-21. Some typical directories in the object name space.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Object Name Space (3)

Win32 CreateFile(C:\foo\bar)

I User-mode
1, (1 0)1 Kernel-mode
/O - .
manager NiCreateFile(\77\C:\foo\bar) g
(ﬂ’r (9)T .Handle ;
Object - .
manlager OpenObjectByName(\?\C:\foo\bar) \ Devices ¢
)y b o —
malli:gger lopParseDevice(DeviceObject,\foo\bar) - Harddisk1
e =i fe,
! Object | - loCallDriver
(6) |File system filters [<----- C:
_ . DEVICE OBJECT: |
C:'s Device Stack ~ (5) ‘r loCallDriver : for C: Volume '
@) NTFS @ oy
NtfsCreateFile() |loCompleteRequest ESYMLINK: :
:\Devices'\Harddisk1 :
(a) (b)

Figure 11-22. I/0O and object manager steps for
creating/opening a file and getting back a file handle.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Object Name Space (4)

Type - Description
_Process User process
_Thread - Thread within a process
_Semaphore Counting semaphore used for inter-process synchronization
_Mutex Binary semaphore used to enter a critical region
_Event Synchronization object with persistent state (signaled/not)
_ALF’G Port Mechanism for inter-process message passing
_Timer Object allowing a thread to sleep for a fixed time interval
_Oueue | Object used for completion notification on asynchronous 1/0
_Open file | Object associated with an open file
_Access token : Security descriptor for some object
_Profile Data structure used for profiling CPU usage
_Section Object used for representing mappable files
_Key . Registry key, used to attach registry to object manager namespace
_Object directory Directory for grouping objects within the object manager
_Symbolic link - Refers to another object manager object by pathname
_Device IO device object for a physical device, bus, driver, or volume instance
_Device driver | Each loaded device driver has its own object

Figure 11-23. Some common executive object types
managed by object manager.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Processes and Threads in Windows Vista (1)

: Job |
__"_________7 ____________________ K_\ _____________ J
Process Process

Thread Thread Thread Thread Thread
| Fiber | | Fiber | | Fiber | | Fiber | | Fiber ! | Fiber | | Fiber | | Fiber !

e — — —— o — — e —— — e — — —— e — — — o —— — _—— — —— e — — ——

Figure 11-24. The relationship between jobs, processes, threads
and fibers. Jobs and fibers are optional; not all processes are
In jobs or contain fibers.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Processes and Threads in Windows Vista (2)

Name Description Notes
Job Collection of processes that share quotas and limits | Rarely used
Process | Container for holding resources
Thread Entity scheduled by the kernel

Fiber Lightweight thread managed entirely in user space Rarely used

Figure 11-25. Basic concepts used for CPU
and resource management.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Job, Process, Thread, and Fiber
Management API Calls (1)

Actual search path for finding program to execute buried in
library code for Win32, but managed more explicitly in UNIX.

Current working directory is kernel-mode concept in UNIX but
user-mode string in Windows.

UNIX parses command line and passes an array of
parameters, Win32 leaves argument parsing up to individual
program.

Whether file descriptors can be inherited in UNIX is property of
handle. In Windows it is property of both handle and parameter
to process creation.

Win32 is GUI-oriented, new processes directly passed
iInformation about their primary window

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Job, Process, Thread, and Fiber
Management API Calls (2)

Windows has no SETUID bit as property of
executable, one process can create a process
that runs as a different user, as long as it can
obtain a token with that user’s credentials.

Process and thread handle returned from
Windows can be used to modify the new
process/thread in many substantive ways.
UNIX just makes modifications to new process
between fork and exec calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Synchronization

Win32 API Function

Description

CreateProcess Create a new process

CreateThread Create a new thread in an existing process
CreateFiber Create a new fiber

ExitProcess Terminate current process and all its threads
ExitThread Terminate this thread

ExitFiber Terminate this fiber

SwitchToFiber Run a different fiber on the current thread
SetPriorityClass Set the priority class for a process
SetThreadPriority Set the priority for one thread
CreateSemaphore Create a new semaphore

CreateMutex Create a new mutex

OpenSemaphore Open an existing semaphore

OpenMutex Open an existing mutex
WaitForSingleObject Block on a single semaphore, mutex, etc.
WaitForMultipleObjects | Block on a set of objects whose handles are given
PulseEvent Set an event to signaled then to nonsignaled

ReleaseMutex

Release a mutex to allow another thread to acquire it

ReleaseSemaphore

Increase the semaphore count by 1

EnterCriticalSection

Acquire the lock on a critical section

LeaveCriticalSection

Release the lock on a critical section

Figure 11-26. Some of the Win32 calls for
managing processes, threads, and fibers.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling (1)

The following conditions cause the currently
running thread to execute the scheduler code:

The currently running thread blocks on a semaphore,
mutex, event, 1/O, etc.

« The thread signals an object (e.g., does an up on a
semaphore or causes an event to be signaled).

« The quantum expires.

Scheduling (2)

The scheduler is also called under two other
conditions:

« An |/O operation completes.
« Atimed walt expires.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling (3)

Win32 process class priorities
Above Below

Real-time | High | Normal | Normal | Normal | Idle

Time critical 31 16 15 15 15 15

Highest 26 15 12 10 8 6

Win32 Above normal 25 14 11 9 7 B
thread Normal 24 13 10 8 6 4
priorities | Below normal 23 12 9 7 5 3
Lowest 22 11 8 6 4 2

Idle 16 1 1 1 1 1

Figure 11-27. Mapping of Win32 priorities to Windows priorities.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling (4)

Priority
(31

MNext thread to run

System <

priorities ™\ o4

16

User
priorities™, 8

O
O

O

0% 2027 &

1
Zero page thread “~0

Idle thread

Figure 11-28. Windows Vista supports 32 priorities for threads.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling (5)

Does a down on the
semaphore and blocks

Semaphore

(@)

Blocked

Waiting on the semaphore

Running Semaphore

A

/
/
/
/

/" Would like to do an up
on the semaphore but
Ready never gets scheduled

(b)

Figure 11-29. An example of priority inversion.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

4 GB

Memory Management(1)

Process A

2GB | _Systemdata_ |
Process A's
private code
and data
|
0

Process B

Process B's
private code
and data

Bottom and top
64 KB are invalid

Process C

Process C's
private code
and data

Figure 11-30. Virtual address space layout for three user
processes on the x86. The white areas are private per
process. The shaded areas are shared among all processes.

Memory Management (2)

Process A Process B Process C
4GB |
| Nonpaged pool | | Nonpaged pool | Nonpaged pool
Paged pool Paged pool Paged pool

HAL + OS HAL + OS HAL + OS
2 GBI Systemdata_| _System data_ System data_
Process A's Process B's Process C's
private code private code private code
and data and data and data
| . |
0

Bottom and top
64 KB are invalid

Figure 11-30. Virtual address space layout for three user
processes on the x86. The white areas are private per
process. The shaded areas are shareskamong alll
processes.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory Management (3)

Process A

4 GB p—

2GB

Process A's
private code
and data

L
0

Process B

Process B's
private code
and data

Bottom and top
64 KB are invalid

Process C

Process C's
private code
and data

Figure 11-30. Virtual address space layout for three user
processes on the x86. The white areas are private per
process. The shaded areas are shared among all processes.

Addressing Large Physical Memories

Win32 API function Description

VirtualAlloc Reserve or commit a region

VirtualFree Release or decommit a region

VirtualProtect Change the read/write/execute protection on a region
VirtualQuery Inquire about the status of a region

VirtualLock Make a region memory resident (i.e., disable paging for it)
VirtualUnlock Make a region pageable in the usual way
CreateFileMapping Create a file mapping object and (optionally) assign it a name
MapViewOfFile Map (part of) a file into the address space
UnmapViewOfFile Remove a mapped file from the address space
OpenFileMapping Open a previously created file mapping object

Figure 11-31. The principal Win32 API functions
for managing virtual memory in Windows.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Implementation of Memory Management

Backing store on disk

s I\ ~
Process A Process B
Stack | __-—=-"""" | Stack
Hegion{ Data I T Tt
) S— “~-._| Data
Paging file
Shared Tt~
library Tt
Lib.dll H""n,hh Shared
“““ “m~~_ | library
Progam| — = ——7T----
Program
Prog1.exe Prog2.exe

Figure 11-32. Mapped regions with their shadow pages on disk.
The /ib.dl/ file mapped into two address spaces at same time.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Page Fault Handling (1)

31 121198 7 6 5 4 3 2 1 0
Physical F bl k115,
ae{lumber AVL|G|A|D|AlC|W|/]|/]|P] (a)
Pag T D|T|s|w
63 62 52 51 121198 7 6 5 4 3 2 1 0
. P PIP|U|R
)N< AVL aPZﬁ',ﬁ?Ler AvL|G|A|D|Alc|w|/|/|P]| ®)
Pag T D|T|s|wW
NX — No eXecute PCD — Page Cache Disable
AVL — AVailable to the OS PWT — Page Write-Through
G — Global page U/S — User/Supervisor
PAT — Page Attribute Table R/W — Read/Write access
D — Dirty (modified) P — Present (valid)

A — Accessed (referenced)

Figure 11-33. A page table entry (PTE) for a mapped page on the
(a) Intel x86 and (b) AMD x64 architectures.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Page Fault Handling (2)

Each page fault can be considered as being in one
of five categories:

« The page referenced is not committed.

« Attempted access to a page in violation of the
permissions.

 Ashared copy-on-write page was about to be
modified.

« The stack needs to grow.

« The page referenced is committed but not currently
mapped In.

Page Fault Handling (3)

o L 20 I —

CR3 CR3

PD PD

0x300 0x300

&, 5

Virtual
‘1100 0000 00 11 0000 0000 1100 0000 00 U-D‘ address ‘1100 0000 00 11 1001 QOO0 1100100001 00

¢0300c00 c0390c84
(@) (b)
Self-map: PD[0xc0300000>>22] is PD (page-directory)

Virtual address (a): (PTE *)(0xc0300c00) points to PD[0x300] which is the self-map page directory entry
Virtual address (b): (PTE *)(0xc0390c84) points to PTE for virtual address 0xe4321000

Virtual
address

Figure 11-34. Windows self-map entry used to map the physical
pages of page tables and page directory into kernel virtual
addresses, for the x86.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Page Replacement Algorithm

 Three levels of activity by the working-set
manager

 Periodic based on a timer

New activity iIs added at each level.
 Lots of memory available

« Memory getting tight

e Memory is tight

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Physical Memory Management (1)

14

13

List headers 12
11

| Standby | {0
9

8

[Modfied 1 5
6

| Free P—> 5
4

3

2

1

[Zeroed p—> O

Page frame database

State Cnt WS Other PT Next

Page tables

Clean -~ X
X

Dirty

Clean

Active 20 |

Clean

Dirty 7

Active 4

Dirty

Free X

Free

Zeroed X

Active 6

Zeroed

Active 14

Zeroed

Figure 11-35. Some of the major fields in the

page frame database for a valid page.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Physical Memory Management (2)

Zero page needed (8)

<
_ \ Page referenced (6)
Working
Sets Soft page fault (2) w
[1]
] Modified Standby Free Zaroed
I Pe9® ["Modified | PES° | Dealloc | Pfac | zero | Page
list
[] page (5) page
[] writer thread
j (4))A)‘ (7)
Page evicted from all working sets (1) Process Exit (3) BAD memory
page
list

Figure 11-36. The various page lists and the
transitions between them.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Input/Output API Calls

/O system call
NtCreateFile
NtReadFile
NtWriteFile
NtQueryDirectoryFile

NtQueryVolumelnformationFile |

NtSetVolumelnformationFile
NtNotifyChangeDirectoryFile
NtQuerylnformationFile
NtSetinformationFile
NtLockFile

NtUnlockFile
NtFsControlFile
NtFlushBuffersFile
NtCancelloFile
NtDeviceloControlFile

Description

Open new or existing files or devices
- Read from a file or device

Write to a file or device

" Request information about a directory, including files

Request information about a volume
‘ Modify volume information
- Complete when any file in the directory or sub-tree is modified
: Request information about a file
- Modify file information
Lock a range of bytes in a file

Remove a range lock
Miscellaneous operations on a file

Flush in-memory file buffers to disk
Cancel outstanding I/O operations on a file
| Special operations on a device

Figure 11-37. Native NT API calls for performing 1/O.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Device Drivers

Device object Loaded device driver

Driver object Driver code

Driver object

Y

Dispatch table

¥

Instance data

CREATE
READ

WRITE

Next device object FLUSH
IOCTL

CLEANUP
CLOSE

TN

Figure 11-38. A single level in a device stack.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

/O Request Packets

Kernel buffer address

Flags

User buffer address
Operation code

Buffer pointers

A

Memory descr list head

|~ NextIRP

Thread's IRP chain link

MDL
MDL —

A

Completion/cancel info

Thread
. Driver
Completion :
queuing
APC block & COMM.

Figure 11-39. The major fields of an I/O Request Packet.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Device Stacks

User process

User
program

Win32

Y

v

Rest of windows |

¥
Filter
\ Y
X , Driver
Function Function stack
¥ ¥ Y
Monolithic Bus Bus
Y ¥ Y
| Hardware abstraction layer |
Controller Controller | l Controller |

%m@

Figure 11-40. Windows allows drivers to be stacked to work
with a specific instance of a device. The stacking is
represented by device objects.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

l
=

File System Structure (1)

- 1 KB >

33

- '
-y N L

X

16 [First user file
15 Y/ (Reserved for future use)7////7/7/7/77/]
14 '/(Hesewed for future use)/ /2.0
13 Y/ (Reserved for future use)////////77 7
12 Y/ (Reserved for future use)/2c00000
11 | $Extend Extentions: quotas,etc.
10 | $Upcase Case conversion table
9 | $Secure Security descriptors for all files
8 [$BadClus List of bad blocks Metadata files
7 [$Boot Bootstrap loader >
6 [$Bitmap Bitmap of blocks used
5% Root directory
4 | $AttrDef Attribute definitions
3 | $Volume Volume file
2 | $LogFile Log file to recovery
1 [$MftMirr Mirror copy of MFT
o[Mt Master File Table J

Figure 11-41. The NTFS master file table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File System Structure (2)

Attribute

Description

Standard information

Flag bits, timestamps, etc.

File name

File name in Unicode; may be repeated for MS-DOS name

Security descriptor

Obsolete. Security information is now in $Extend$Secure

Attribute list

Location of additional MFT records, if needed

Object ID

64-bit file identifier unique to this volume

Reparse point

Used for mounting and symbolic links

Volume name

Name of this volume (used only in $Volume)

Volume information

Volume version (used only in $Volume)

Index root

Used for directories

Index allocation

Used for very large directories

Bitmap

Used for very large directories

Logged utility stream

Controls logging to $LogFile

Data

Stream data; may be repeated

Figure 11-42

. The attributes used in MFT records.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Storage Allocation (1)

Standard File name Data -«—— Info about data blocks —
info header header header
Record \ \ \Header Run #1 Run #2 Run #3
header\ : : :
Standard || . : : :
MTF I s File name || O : 9 20: 4 64: 2 80 3 /used
record ; : : .
Disk blocks

Blocks numbers 20-23 64-65 80-82

Figure 11-43. An MFT record for a three-run, nine-block stream.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

109
108

107
106

105 |

104
103

102 |

101
100

Storage Allocation (2)

l [Run #m+1

Run n

0

-— Second extension record

Run #k+1

Run m

-«— First extension record

MFT 105

MFT 108

Run #1)- - -

Run #k

-«— Base record

Figure 11-44. Afile that requires three MFT
records to store all its runs.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Storage Allocation (3)

A directory entry contains the MFT index for the file,
Standard Index root the length of the file name, the file name itself,
info header header and various fields and flags

Record \ \
header

\|I Standard 7 //////////

Unus

Figure 11-45. The MFT record for a small directory.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

File Compression

Criginal uncompressed file

0 / 16 32 47

0 7. 8 23 . 24 31"

Compressed Ulnc.l‘:orl'n[‘!:-rés!se:d Compressed
Disk addr 30 37 40 55 85 92
(a)
Header Five runs (of which two empties)

R, U, N —L S — S N_—

tandar . i i i i i i 3//////////
Ism;:;l}"i File name 0243 3053 028 40216 85;3 0;3 %UHUSE‘V///A

(b)

Figure 11-46. (a) An example of a 48-block file being
compressed to 32 blocks. (b) The MFT
record for the file after compression.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13- 6006639

Security In Windows Vista (1)

Security properties inherited from the original
security design of NT:

e Secure login with anti-spoofing measures.
 Discretionary access controls.

Privileged access controls.

 Address space protection per process.

* New pages must be zeroed before being mapped In.
e Security auditing.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Security In Windows Vista (2)

Header

Expiration
time

Groups

Default
CACL

User
SID

Group
SID

Restricted
SIDs

Privileges

Impersonation
level

Integrity
level

Figure 11-47. Structure of an access token.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Security in Windows Vista (3)

Security
descriptor

File | Header |

: Deny
Security Eivie } ACE

descriptor EEEEE

— Header T
Owner's SID Cathy

Group SID 710000
DACL oW
SACL Ida

111111

Allow
Everyone
100000

Header

Audit
Marilyn ACE

111111

Figure 11-48. An example security descriptor for a file.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Security API Calls

Win32 API function Description
InitializeSecurityDescriptor Prepare a new security descriptor for use
LookupAccountSid Look up the SID for a given user name

SetSecurityDescriptorOwner | Enter the owner SID in the security descriptor
SetSecurityDescriptorGroup | Enter a group SID in the security descriptor

InitializeAcl Initialize a DACL or SACL

AddAccessAllowedAce Add a new ACE to a DACL or SACL allowing access
AddAccessDeniedAce Add a new ACE to a DACL or SACL denying access
DeleteAce Remove an ACE from a DACL or SACL
SetSecurityDescriptorDacl Attach a DACL to a security descriptor

Figure 11-49. The principal Win32 API functions for security.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

	Diapositive numéro 1
	Diapositive numéro 2
	Diapositive numéro 3
	Diapositive numéro 4
	Diapositive numéro 5
	Diapositive numéro 6
	Diapositive numéro 7
	Diapositive numéro 8
	Diapositive numéro 9
	Diapositive numéro 10
	Diapositive numéro 11
	Diapositive numéro 12
	Diapositive numéro 13
	Diapositive numéro 14
	Diapositive numéro 15
	Diapositive numéro 16
	Diapositive numéro 17
	Diapositive numéro 18
	Diapositive numéro 19
	Diapositive numéro 20
	Diapositive numéro 21
	Diapositive numéro 22
	Diapositive numéro 23
	Diapositive numéro 24
	Diapositive numéro 25
	Diapositive numéro 26
	Diapositive numéro 27
	Diapositive numéro 28
	Diapositive numéro 29
	Diapositive numéro 30
	Diapositive numéro 31
	Diapositive numéro 32
	Diapositive numéro 33
	Diapositive numéro 34
	Diapositive numéro 35
	Diapositive numéro 36
	Diapositive numéro 37
	Diapositive numéro 38
	Diapositive numéro 39
	Diapositive numéro 40
	Diapositive numéro 41
	Diapositive numéro 42
	Diapositive numéro 43
	Diapositive numéro 44
	Diapositive numéro 45
	Diapositive numéro 46
	Diapositive numéro 47
	Diapositive numéro 48
	Diapositive numéro 49
	Diapositive numéro 50
	Diapositive numéro 51
	Diapositive numéro 52
	Diapositive numéro 53
	Diapositive numéro 54
	Diapositive numéro 55
	Diapositive numéro 56
	Diapositive numéro 57
	Diapositive numéro 58
	Diapositive numéro 59

