
MODERN OPERATING SYSTEMS
Third Edition

ANDREW S. TANENBAUM

Chapter 11

Case Study 2: Windows Vista

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-1. Major releases in the history of Microsoft operating
systems for desktop PCs.

History of Vista

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-2. DEC Operating Systems developed by Dave Cutler.

2000s: NT-based Windows (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-3. The Win32 API allows programs to run
on almost all versions of Windows.

2000s: NT-based Windows (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-4. Split client and server releases of Windows.

2000s: NT-based Windows (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-5. Comparison of lines of code for selected
kernel-mode modules in Linux and Windows (from Mark
Russinovich, co-author of Microsoft Windows Internals).

Windows Vista

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-6. The programming layers in Windows.

Programming Windows Vista

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-7. The components used to build NT subsystems.

Programming Windows Vista (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-8. Common categories of kernel-mode object types.

The Native NT Application
Programming Interface (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-9. Examples of native NT API calls that use handles to
manipulate objects across process boundaries.

The Native NT Application
Programming Interface (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-10. Examples of Win32 API calls and the
native NT API calls that they wrap.

The Win32 Application
Programming Interface

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-11. The registry hives in Windows Vista. HKLM is a
short-hand for HKEY_LOCAL_MACHINE.

The Windows Registry (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-12. Some of the Win32 API calls for using the registry

The Windows Registry (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-13. Windows kernel-mode organization.

Operating System Structure

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-14. Some of the hardware functions the HAL manages.

The Kernel Layer

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-15. dispatcher_header data structure embedded in
many executive objects (dispatcher objects).

Dispatcher Objects

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-16. Simplified depiction of device stacks for two NTFS
file volumes. I/O request packet passed from down the stack.

The Device Drivers

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-17. The structure of an executive object
managed by the object manager.

Implementation of the Object Manager

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-18. Handle table data structures for a minimal
table using a single page for up to 512 handles.

Handles (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-19. Handle table data structures for a
maximal table of up to 16 million handles.

Handles (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-20. The object procedures supplied
when specifying a new object type.

The Object Name Space (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-21. Some typical directories in the object name space.

The Object Name Space (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-22. I/O and object manager steps for
creating/opening a file and getting back a file handle.

The Object Name Space (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-23. Some common executive object types
managed by object manager.

The Object Name Space (4)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-24. The relationship between jobs, processes, threads
and fibers. Jobs and fibers are optional; not all processes are

in jobs or contain fibers.

Processes and Threads in Windows Vista (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-25. Basic concepts used for CPU
and resource management.

Processes and Threads in Windows Vista (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Job, Process, Thread, and Fiber
Management API Calls (1)

• Actual search path for finding program to execute buried in
library code for Win32, but managed more explicitly in UNIX.

• Current working directory is kernel-mode concept in UNIX but
user-mode string in Windows.

• UNIX parses command line and passes an array of
parameters, Win32 leaves argument parsing up to individual
program.

• Whether file descriptors can be inherited in UNIX is property of
handle. In Windows it is property of both handle and parameter
to process creation.

• Win32 is GUI-oriented, new processes directly passed
information about their primary window

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Job, Process, Thread, and Fiber
Management API Calls (2)

• Windows has no SETUID bit as property of
executable, one process can create a process
that runs as a different user, as long as it can
obtain a token with that user’s credentials.

• Process and thread handle returned from
Windows can be used to modify the new
process/thread in many substantive ways.
UNIX just makes modifications to new process
between fork and exec calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-26. Some of the Win32 calls for
managing processes, threads, and fibers.

Synchronization

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling (1)

The following conditions cause the currently
running thread to execute the scheduler code:

• The currently running thread blocks on a semaphore,

mutex, event, I/O, etc.
• The thread signals an object (e.g., does an up on a

semaphore or causes an event to be signaled).
• The quantum expires.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Scheduling (2)

The scheduler is also called under two other
conditions:

• An I/O operation completes.
• A timed wait expires.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-27. Mapping of Win32 priorities to Windows priorities.

Scheduling (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-28. Windows Vista supports 32 priorities for threads.

Scheduling (4)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-29. An example of priority inversion.

Scheduling (5)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory Management(1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-30. Virtual address space layout for three user
processes on the x86. The white areas are private per
process. The shaded areas are shared among all processes.

Figure 11-30. Virtual address space layout for three user
processes on the x86. The white areas are private per
process. The shaded areas are shared among all
processes.

Memory Management (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-30. Virtual address space layout for three user
processes on the x86. The white areas are private per
process. The shaded areas are shared among all processes.

Memory Management (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-31. The principal Win32 API functions
for managing virtual memory in Windows.

Addressing Large Physical Memories

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-32. Mapped regions with their shadow pages on disk.
The lib.dll file mapped into two address spaces at same time.

Implementation of Memory Management

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-33. A page table entry (PTE) for a mapped page on the
(a) Intel x86 and (b) AMD x64 architectures.

Page Fault Handling (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Page Fault Handling (2)

Each page fault can be considered as being in one
of five categories:

• The page referenced is not committed.
• Attempted access to a page in violation of the

permissions.
• A shared copy-on-write page was about to be

modified.
• The stack needs to grow.
• The page referenced is committed but not currently

mapped in.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-34. Windows self-map entry used to map the physical
pages of page tables and page directory into kernel virtual

addresses, for the x86.

Page Fault Handling (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Page Replacement Algorithm

• Three levels of activity by the working-set
manager

• Periodic based on a timer

New activity is added at each level:
• Lots of memory available
• Memory getting tight
• Memory is tight

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-35. Some of the major fields in the
page frame database for a valid page.

Physical Memory Management (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-36. The various page lists and the
transitions between them.

Physical Memory Management (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-37. Native NT API calls for performing I/O.

Input/Output API Calls

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-38. A single level in a device stack.

Device Drivers

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-39. The major fields of an I/O Request Packet.

I/O Request Packets

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-40. Windows allows drivers to be stacked to work
with a specific instance of a device. The stacking is
represented by device objects.

Device Stacks

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-41. The NTFS master file table.

File System Structure (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-42. The attributes used in MFT records.

File System Structure (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-43. An MFT record for a three-run, nine-block stream.

Storage Allocation (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-44. A file that requires three MFT
records to store all its runs.

Storage Allocation (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-45. The MFT record for a small directory.

Storage Allocation (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-46. (a) An example of a 48-block file being
compressed to 32 blocks. (b) The MFT
record for the file after compression.

File Compression

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Security in Windows Vista (1)

Security properties inherited from the original
security design of NT:

• Secure login with anti-spoofing measures.
• Discretionary access controls.
• Privileged access controls.
• Address space protection per process.
• New pages must be zeroed before being mapped in.
• Security auditing.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-47. Structure of an access token.

Security in Windows Vista (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-48. An example security descriptor for a file.

Security in Windows Vista (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 11-49. The principal Win32 API functions for security.

Security API Calls

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

	Diapositive numéro 1
	Diapositive numéro 2
	Diapositive numéro 3
	Diapositive numéro 4
	Diapositive numéro 5
	Diapositive numéro 6
	Diapositive numéro 7
	Diapositive numéro 8
	Diapositive numéro 9
	Diapositive numéro 10
	Diapositive numéro 11
	Diapositive numéro 12
	Diapositive numéro 13
	Diapositive numéro 14
	Diapositive numéro 15
	Diapositive numéro 16
	Diapositive numéro 17
	Diapositive numéro 18
	Diapositive numéro 19
	Diapositive numéro 20
	Diapositive numéro 21
	Diapositive numéro 22
	Diapositive numéro 23
	Diapositive numéro 24
	Diapositive numéro 25
	Diapositive numéro 26
	Diapositive numéro 27
	Diapositive numéro 28
	Diapositive numéro 29
	Diapositive numéro 30
	Diapositive numéro 31
	Diapositive numéro 32
	Diapositive numéro 33
	Diapositive numéro 34
	Diapositive numéro 35
	Diapositive numéro 36
	Diapositive numéro 37
	Diapositive numéro 38
	Diapositive numéro 39
	Diapositive numéro 40
	Diapositive numéro 41
	Diapositive numéro 42
	Diapositive numéro 43
	Diapositive numéro 44
	Diapositive numéro 45
	Diapositive numéro 46
	Diapositive numéro 47
	Diapositive numéro 48
	Diapositive numéro 49
	Diapositive numéro 50
	Diapositive numéro 51
	Diapositive numéro 52
	Diapositive numéro 53
	Diapositive numéro 54
	Diapositive numéro 55
	Diapositive numéro 56
	Diapositive numéro 57
	Diapositive numéro 58
	Diapositive numéro 59

