UMass Boston CS 444 Project 2
Posted Wednesday, 26 February 2025
Due Wednesday, 12 March 2025 at 11:59pm

1 Introduction

This project develops RAID 2 encoding and decoding based on the Hamming(7, 4) code. See lecture ham-
ming.pdf.

Briefly, RAID 2 splits every 4-bit nibble of a file into four data bits and adds three parity bits for error detection
and correction. So ASCII character A’ which is one byte (hex 41) is first split into two nibbles (hex 4 = binary
0100 and hex 1 = binary 0001).

Then, using Hamming(7, 4), each 4-bit nibble will be encoded as 7 bits named: P1, P2, D1, P4, D2, D3, and
D4. Thus, A’ which is two nibbles will require 14 bits. However, for RAID 2 the bits go to 7 separate disks. We
will use 7 files instead.

As a reminder, for Hamming(7, 4), these are the parity rules: For P1, take even parity of D1, D2, D4. For
P2, take even parity of D1, D3, D4. For P4, take even parity of D2, D3, D4.

This means that the P1 bits of each nibble in the encoded file are concatenated and stored on one disk drive;
similarly for the other six types of bits. If one drive (for us, one file) fails, Hamming(7, 4) code can detect and
correct the error.

Example: Consider an ASCII input file “ABCD”, size 4 bytes. In hex bytes, it reads: 0x41, 0x42, 0x43, 0x44.
The eight nibbles of the file are individual hex digits: 4,1,4,2,4,3,4,4. The following table lists the corresponding
Hamming(7, 4) bits by nibble.

nibble P1 P2 D1 P4 D2 D3 D4
4 1 0 0 1 1 0 0
1 1 1 0 1 0 0 1
4 1 0 0 1 1 0 0
2 0 1 0 1 0 1 0
4 1 0 0 1 1 0 0
3 1 0 0 0 0 1 1
4 1 0 0 1 1 0 0
4 1 0 0 1 1 0 0
O0xEF 0x50 0x00 OxFB O0xAB 0x14 0x44

In this table, the original four bytes (left column 1) are encoded into 7 bit-type bytes (columns 2,3,4,5,6,7,8).
Read them top to bottom. For example, column 2 is bit-type P1 with data 111011115, which is OxEF in hex. Check
that you can decipher the other columns.



The tasks for this project are to write two C programs. The first program shall be named raid.c. It encodes
one file xyz into seven files. It is run like this:

pels> ./raid -f xyz
It creates seven files:

xyz.part0
xyz.partl
Xyz.part2
xyz.part3
xXyz.part4
Xyz.partb
Xyz.part6

These files store the bits of P1, P2, D1, P4, D2, D3, and D4, in that order. The command-line option -f filename
is a required feature.

The second program shall be named diar.c — which is "raid” spelled backwards. It decodes seven files back to
the original file. It is run like this:

pels5> ./diar -f xyz -s 16

It looks for the seven files xyz.part [0-6], decodes them, and creates a new file called xyz.2. The command-line
options -f filename and -s numberOfBytes are required features.

2 Project Tasks

First, create a project folder under your cs444 directory.
pel5> mkdir ~/proj2

Next, copy five files from the instructor’s directory.
pel5> cp /home/hdeblois/cs444/proj2/* ~/proj2
The files are the following.

-rw-r--r—— 1 hdeblois 5694072 Feb 26 21:33 completeShakespeare.txt
-rwxr-xr-x 1 hdeblois 13400 Feb 26 21:49 diarjhd

-rw-r—--r—- 1 hdeblois 106 Feb 26 21:34 Makefile
-rwxr-xr-x 1 hdeblois 13344 Feb 26 21:49 raidjhd
-rw-r—--r—- 1 hdeblois 8 Feb 26 21:42 test.txt

The two text files completeShakespeare.txt and test.txt will be used to test your programs. The Makefile can
be used to compile your project. The two executables raidjhd and diarjhd were compiled from the instructor’s
code.

Prepare a readMe. txt to list how you developed your code in increments. For each time you work, make an entry
in your readMe.txt file with date and what you worked on. Keep a list of sources you use. Put your name in the
readMe.txt in a comment at the top.



Keep incremental copies of your code on the server. For example, each day copy your code to <name>.c-Feb4. Code
will be collected from the server often. Enter your full name at the start of the readMe.txt file and in a comment
in your code since some user names bear no resemblance to real names.

If you consult and/or use (small features of) code on the internet, list each source in your readMe.txt and cite the
source in your code according to the MIT Writing Code formats. This applies to code you adapt as well. Do not
cite fellow student’s code because it is not a published source and you are not supposed to share your code. You
do not have to cite any code given you by the instructor.

Regarding compiling with a Makefile, the <name> of your code must match the name(s) you include in the Makefile.
Type: man make to see information about GNU Make Utility.

2.1 Task 1: to RAID

You can run raidjhd and see its output.

pel5> ./raidjhd -f test.txt

peld> 1s -1
pel5> ./raidjhd -f completeShakespeare.txt
pels> 1s -1

Your task is to write your own raid.c that encodes RAID 2. It accepts the command-line option -f filename.

2.2 Task 2: from RAID

You can run diarjhd and see its output.

pel5> ./diarjhd -f test.txt -s 16

pels> 1s -1
pels> ./diarjhd -f completeShakespeare.txt -s 5694072
pels> 1s -1

Note that the sizes of these two test files are multiples of four. Thus, the last bytes of the RAID files are filled
with real data bits. If the size is not a multiple of four, there will be trailing non-data bits, which must be ignored.
However, you are not expected to handle this scenario — assume the sizes of all test files are multiples of four.
Your task is to write your own diar.c that decodes RAID 2 and corrects errors. It accepts the command-line
option -f filename and -s numberOfBytes.
You can verify that the restored files are identical to the originals.

pelb> diff test.txt test.txt.2
pelb> diff completeShakespeare.txt completeShakespeare.txt.2

There should be no output from the diff command. When there are no failed drives, we can use just parts 2, 4,
5, and 6 to reconstruct the original file.

More importantly, RAID 2 can perform error correction when one drive fails. The techniques for error detection
and correction are described in the Hamming slides. You can test error correction by deliberately corrupting a
RAID file. For example,

pelb> cp completeShakespeare.txt completeShakespeare.txt.part2
pels> ./diarjhd -f completeShakespeare.txt -s 5694072
pelb> diff completeShakespeare.txt completeShakespeare.txt.2



There should be no output from the diff command. If you want to corrupt a different file, remember to run
raidjhd again to restore the corrupted file back to the correct status before you corrupt another — RAID 2 can
handle only one failed drive.

3 Advice

It is best to write your C code on the server using a text editor, e.g., nano or emacs. Whether you write your
code there or on a different machine, you need to compile and run on server each time you work on it because the
libraries may differ between machines.

For command-line options, you may want to include the getopt.h library and use it to implement the options.
As for variables, include int debug and the debug switch -d to set int debug = 1 and use it to turn on printf
statements.

4 Grading Rubric

Be sure to “make your code your own,” by organizing it carefully and by knowing exactly how it works. Do not
use Al generated code in your code. Also, the instructor and graders may require you to come in and explain how
particular sections of your code work. You will find that knowing the algorithm before you start coding allows you
to code your own style.

The first step in grading is to run your executable in your course directory and read your readMe.txt. After
we check that your executable runs, we copy your code to another location, recompile it and test it again, and then
run MOSS on all pairs of code. In grading, we run Stanford’s Measure of Software Similarity (MOSS) to check that
no one duplicates someone else’s code, but if a too high level of duplication occurs, both students will be penalized.

Be sure to notice how the uppercase and lowercase letters are used in naming the files and directories that you
are required to create (Makefile, projl, readMe.txt). Names must match exactly or your submission will not be
collected.

Any file changes made after 11:59 pm on the due date will not be taken into account in grading. Any request for
an extension must be received before the due date/time and will only be considered if substantial (compiled/run)
work has been done along the way and is on the server. Extensions may result in taking some points off your grade.
Code submitted late will lose 15 points.

e (15 points) You have the right files in the right places

(15 points) Both your programs compile without errors or warnings, the executables match the ones you
submitted, and the input switches work

e (15 points) readMe.txt contains your full name, you list the six commands required (two to run your raid
with each test file, two to run your diar with each test file and two to show how to display debug for each
program), you list of what was worked on in each increment and you list of sources consulted if any.

¢ (20 points) Your full name is in both programs, your code reads the CL correctly, your code is correctly
indented, names are well-chosen, comments are useful, and citing is specific — including URL, whether copied
or copied and modified and the end of the cited section is marked so we know where your own code resumes

e (5 points) The sources you cite in your programs are a subset of the sources you cite in your readMe.txt and
you did a code walkthru if requested



e (15 points) Tests with test.txt passed, output for completeShakespeare.txt is correct, and your debug switch
shows intermediate results

e (15 points) After doing the suggested command that corrupts the output file your raid created, your diar can
correct the error and diff shows no difference between original input file and corrected file.



	Introduction
	Project Tasks
	Task 1: to RAID
	Task 2: from RAID

	Advice
	Grading Rubric

