
GSC Proposal 2024

J.H. DeBlois

14 November 2024

1 A. Title: Build Con�dence In Software, Appendix A

The title of the proposal is "Build Con�dence In Software".

2 B. Principal Investigator: Jane Holly DeBlois, PhD

This proposal is based on teaching experience that already has some collaborations
across UMB in place. This past semester, while looking for seven new software
projects for the �fty-one students enrolled in CS410, the instructor discovered op-
portunities outside the Computer Science (CS) Department.

Prof. Edward Miller, Gerontology, contributed ideas for a project to build software
for elderly people. His prior student, Debby Dowd, is Team 6 Client.

Bala Sundaram, Shubhro Sen and Maria Vasilevsky, Venture Development Center,
contributed a project to build software doing climate carbon credit assessments. Alvin
Tian is Team 5 Client.

2.1 Need

This proposal is focused on how to teach students to build modern software well.
The assessment that building software is di�cult to do has been the case for many
decades.

We transitioned from "waterfall" methodology to agile methods over twenty years ago,
but are still facing the challenge of �nding an educational paradigm that combines
traditional behaviorist methods necessary for large class size with the collaborative

1



methods appropriate for team-based learning and the humanist methods that can
focus learning on something speci�c that all students see as bene�cial and which can
be graded by clear critieria.

It is the doing and the facts about what works that drive invention toward the client's
goals. Thus, the con�dence is not only con�dence in the code built but more impor-
tantly con�dence in the payo� of each hour worked.

2.2 Impact

The educational paradigm is unusual. The instructor uses the textbook Essential
Scrum to teach the terms. The homeworks reinforce writing requirments as single
sentences, writing tests so clients as well as developers understand and making a list
of items to build in the days of the sprint. See the wonderful drawing of sprinting
shown as Figure 1 in Section E.

Then the instructor introduces the clients who explain the team projects. The educa-
tional paradigm shifts gradually to collaboration and building code. The instructor
watches. A �rst round of student slides explains what work each student did during
the days of the �rst sprint and what new skills the student acquired.

The proof in Appendix A is o�ered to counteract the thought that software is taking
over our lives. It isn't. The tech revolution continues for sure so the number of
syntactically and semantically correct computer programs running keeps growing. As
do the programs that have �aws.

The number of human thoughts and actions (that we call human functions) is not
only in�nite but uncountably in�nite (like the in�nity of real numbers you can �nd
between any two real numbers). Think of the number of meetings occurring all over
the world in which humans are discussing AI. Think also of the number of times in
the day when your activity has nothing to do with a computer program.

Assisted by the CPIs, the PI plans to write an academic paper on the educational
paradigm. It will address scouting for projects at UMB, as well as combining the
behaviorist paradigm with the collaborative paradigm that has the human values
dimension more in the front. It will also address ways to measuring increases in
student con�dence, as explained further in Section E. It will also address how the
values in the classroom might translate into policy at higher levels.

2



2.3 Methods

The scholarship of how we build resides in the class, instructor, graders and clients.
Students are not graded on their product, but instead on how they build during the
sprint. The client expresses opinions about the product as frequently as they desire,
so there is no way the client does not get a product that is what they want, although
of course some aspects may not yet be built.

Scholarship deserves a second comment here. For learning to be sound as well as deep,
it must be accomplished in a manner that meets the highest standard of academic
honesty. The PI has requested the provost to add the line "Writing Code" right
after the line "Writing and essays" in the description of Academic Work on the UMB
website https://www.umb.edu/provost/academic-work (check this).

The instructor collects data during the semester and analyzes it further after the
semester. In a manner similar to student activities in the class, the instructor will
update the paradigm and the work product aspects that are assessed.

3 Appendix A. Proof that whereas the number of possible

computer programs is countably in�nite, it is less than the

number of human functions, which is uncountably in�nite.

This proof provides essential context for the proposal. A similar proof has been taught
in Prof. Simovici's CS622. Focusing on the enormity of human functions enables us
to teach how to build code in proper prospective.

3.1 Objective

What needs proof is: Computer programs can be modeled as words in a language and
listed in order with a proof that the size of the set is countably in�nite. The symbol
ℵ0 read as "aleph null" stands for a countable in�nity.

Human functions can be modeled, but attempts to list them fail, and we can prove
that the number of such functions is uncountably in�nite. Thus, forever bigger than
ℵ0.

When a human activity is partially replaced by a computer program, some new human
functions may become necessary. Our proof shows that the total of human functions
must grow too, and by more. The reference for the next two sections is Theory of
Formal Languages with Applications, Dan A. Simovici and Richard L. Tenney, World

3



Scienti�c, 1999.

3.2 Count the Number of Computer Programs

To count the computer programs, we use the concepts of sets, cardinality, bijection,
alphabet, words and language. As Prof. Simovici mentioned (p. 57), �Programs and
the data they manipulate may be regarded as words over appropriate alphabets.�

On p. 57, an alphabet is a �nite non-empty set. The elements are symbols. De�nition
2.2.1 A word of length n on an alphabet A is a sequence of length n of symbols of
this alphabet.

Also, �Example 2.2.3, p. 58, Any C program is a word over the basic alphabet of
this language that includes small and capital letters, as well as special symbols, such
as parentheses, brackets, braces, spaces, new line characters, quotation marks, etc.
Not all these characters are visible; in other words, some characters (such as spaces)
appear on paper only as white spaces. For example, the famous C program:

#include <stdio.h> main(){ printf("hello, world\n"); }

can be looked at as a word.�

Now, from cs622 class notes, �Numbering Words�, we have: �Let A = {a0, . . . , an−1}
be an alphabet containing n symbols. Words over A can be encoded as natural
numbers; in other words, we can de�ne a bijection ϕA : A∗ −→ N by:

ϕA(x) =

{
0 if x = λ

nϕA(y) + i+ 1 if x = yai

for every x in A∗.�

This is a recursive function that pushes left on each step. See Example, same page,
if A = {a0, a1, a2}, x = a0a1a0a2 and y = a2a2a2, then:

ϕA(x) = 33 · 1 + 32 · 2 + 31 · 1 + 3 = 51

ϕA(y) = 32 · 3 + 31 · 3 + 3 = 39

Note that any word of a certain length will have its interval, no two distinct words in
Ak can be mapped into the same number in l(k), so ϕA de�nes an injection of Ak into
l(k); and for every number m in l(k) there is a word x in Ak such that ϕA(x) = m.
Therefore, ϕA is a bijection between A∗ and N.

4



Therefore, the number of possible computer programs is a countable in�nity.

3.3 Count the Number of Human Functions

Now, we count the number of human functions. Suppose we start with a list L of the
basic things humans can think of. Then, because ideas take form in di�erent ways,
we let each human function be a subset of that list. P (L) can be shown to be not
countable in a proof by contradiction. Suppose P (L) is countable. Then we have the
mapping f : N −→ P (L).

Per p. 44, we could have this list:

0: a00 a01 a02 a03 a04 · · · (a particular subset)
1: a10 a11 a12 a13 a14 · · ·
2: a20 a21 a22 a23 a24 · · ·
3: a30 a31 a32 a33 a34 · · ·
4: a40 a41 a42 a43 a44 · · ·
5: a50 a51 a52 a53 a54 · · ·

...
k: ak0 ak1 ak2 ak3 ak4 · · · akk

where:

aij =

{
0 if j /∈ f(i) where f(i) is a particular subset

1 if j ∈ f(i)

Then, quoting further from Simovici and Tenney, p. 44, �In other words, the aijs
correspond to the characteristic function of the set f(i). The set D is formed by
'going down the diagonal' and spoiling the possibility that D = f(k), for each k. At
row k, we look at akk in column k. If this is 1, i.e., if k ∈ f(k) then we make sure
that the corresponding position for the set D has a 0 in it by saying that k /∈ D. On
the other hand, if akk is a 0, i.e., k /∈ f(k), then we force the corresponding position
for the set D to be a 1 by putting k into D. This guarantees that D ̸= f(k), because
its characteristic functions di�er from that of f(k) in column k.�

Thus no bijection. Therefore, we have a proof that the number of human functions
is an uncountable in�nity.

This proof technique, diagonalizaton, �rst appeared in the 1891 paper of Georg Can-
tor.

5



4 References:

1. DeBlois, J.H., https://www.cs.umb.edu/ hdeblois/0list51/. Click on JHD CV or
explore cs410 student initial simple projects.

2. Joint Task Force on Computing Curricula, Software Engineering 2004: Curriculum
Guidelines for Undergraduate Degree Progams in Software Engineering, August 23,
2004.

3. National Center for Science and Engineering Statistics, National Science Founda-
tion, "Diversity and STEM: Women, Minorities and Persons with Disabilities: 2023",
NSF report.

3. Roycroft, Sian, Elevate Your Teaching: Discover the Power of Educational Paradigms,
Edge Education, https://edgeeducation.com/discover-the-power-of-educational-paradigms/,
June 21, 2023.

4. Rubin, Kenneth S., Essential Scrum: A Practical Guide to the Most Popular Agil
Processes, Addison-Wesley, 2013.

5. Simovici, Dan A. and Richard L. Tenney, Theory of Formal Languages with
Applications, World Scienti�c, 1999.

6. Sotomayor, Sonia, Speaking at Radcli�e Day, June 2024, video:

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.youtube.com/watch%3Fv%3DUGvU_qUHYkU&ved=2ahUKEwix8_i6796JAxVTKFkFHQ7gE30QwqsBegQICRAF&usg=AOvVaw2qRVH9ZnrLmUNeON_A0Rv_

6


