
CS 444 Operating Systems
Chapter 2 Processes and Threads

J. Holly DeBlois

September 12, 2024

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 1 / 56



The Process Model

A (sequential) process is an instance of running a program

Multiprogramming of four processes is done through process switch

These processes are independent in appearance

Only one process is active at a time

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 2 / 56



Process Creation

Four principal events that cause processes to be created

1 System initialization (ssh, printer, mail, web daemons)
2 Execution of a process creation system call by a running process

fork()

3 A user request to create a new process

4 Initiation of a batch job

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 3 / 56



POSIX System Calls for Process Creation

fork(): duplicate the core image

execve(): wipe the core image and load another executable

The entry in the process table is unchanged
Maintain the process tree, which is rooted at process 1

Reason for this two-step process creation:

Allow the child process to manipulate the file descriptors after

fork() so that stdin, stdout, and stderr can be redirected

For example,

Redirect stdin to a data file
Redirect stdout to a printer
Redirect stderr to a log file
Redirect stdin and stdout to a pipe

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 4 / 56



Process Termination

Typical conditions that terminate a process:

1 Normal exit (voluntary)

2 Error exit (voluntary)

3 Fatal error (involuntary)

4 Killed by another process (involuntary)

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 5 / 56



Process States

Three process states

1 Running, actually using the CPU at that instant
2 Ready, runnable, temporarily stopped to let another process run

Ready queue
Process scheduler

3 Blocked, unable to run until some external event happens

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 6 / 56



Process States

1 Process blocks for input

2 Scheduler picks another process

3 Scheduler picks this process

4 Input becomes available

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 7 / 56



Process Table

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 8 / 56



Handling Interrupts

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 9 / 56



Modeling Multiprogramming

System performance
depends on degree of
multiprogramming

CPU utilization = 1 − pn

Queueing theory

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 10 / 56



Example of Degree of Multiprogramming

8GB RAM: OS takes 2GB; run 3 processes at 2GB each

80% I/O wait leads to 49% CPU utilization

Add 8GB RAM, run 4 additional processes

79% CPU utilization

Add yet another 8GB RAM, run 4 additional processes

91% CPU utilization

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 11 / 56



Thread Usage: Word Processor

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 12 / 56



Thread Usage: Web Server

Thread creation is 10 to 100 times faster than process creation

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 13 / 56



Web Server: Dispatcher and Worker Threads

Master/slave programming model

(a) Dispatcher thread will block if no request

(b) Worker thread will block if no work

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 14 / 56



Three Programming Models of Servers

Threads: easy to code, good performance

Single-threaded process: easy to code, low performance

Finite-state machine: hard to code, high performance

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 15 / 56



The Classical Thread Model

3 single-threaded processes 1 process with 3 threads

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 16 / 56



Process and Thread Data

Processes are used to group
resources together

Threads are the entities
scheduled for execution on the
CPU

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 17 / 56



Each Thread Has its Own Stack

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 18 / 56



POSIX Threads

Tutorial: https://hpc-tutorials.llnl.gov/posix/

We will use Pthreads in a programming project later

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 19 / 56

https://hpc-tutorials.llnl.gov/posix/


Implementing Threads at the User- or Kernel-Level

A user-level thread library A kernel-level thread package

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 20 / 56



User-Level Thread Library

Pros

Faster thread switching
Customized thread scheduling

Cons

How to handle a blocking system call made by one thread
What to do when one thread incurs page fault
The original reason to do multithreading is for applications where
threads block often

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 21 / 56



Issues in Kernel-Level Threads

After fork(), should the threads be duplicated?

Which threads handle signals?

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 22 / 56



Hybrid Implementation

Multiplexing user-level threads onto kernel-level threads

In Linux, one user thread is mapped to one kernel thread

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 23 / 56



Issues in Making Single-Threaded Code Multithreaded

Conflicts between threads over the use of a global variable

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 24 / 56



Private Global Variables

Let threads have private global variables

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 25 / 56



Race Conditions

Two processes want to access
shared memory at the same time

The results depend on who wins
and who loses the race

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 26 / 56



Requirements to Avoid Race Conditions

No two processes may be simultaneously inside their critical regions

No assumptions may be made about speeds or the number of CPUs

No process running outside its critical region may block other
processes

No process should have to wait forever to enter its critical region

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 27 / 56



Critical Regions

Mutual exclusion when using critical regions

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 28 / 56



Mutual Exclusion by Busy Waiting

Busy waiting at the inner while loops — note the semicolons at end
of line

This implements strict alternation

Not ideal

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 29 / 56



Peterson’s Solution, Software Busy Waiting

First software solution for mutual exclusion without strict alternation

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 30 / 56



Peterson’s Solution, 1981

#define FALSE 0

#define TRUE 1

#define N 2

int jail;

int interested[N] = {FALSE, FALSE};

void enterRegion(int me) {

int you;

you = 1 - me;

interested[me] = TRUE;

jail = me;

while (jail == me && interested[you] == TRUE)

;

}

void leaveRegion(int me) {

interested[me] = FALSE;

}

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 31 / 56



Generalized Peterson’s Solution

#define N 5

int height[N] = { -1 };

int jail[N];

void leaveRegion(int me) {

height[me] = -1;

}

void enterRegion(int me) {

int level, other;

for (level = 0; level < N; level++) {

height[me] = level;

jail[level] = me;

while (jail[level] == me) {

for (other = 0; other < N; other++) {

if (other == me)

continue;

if (height[other] >= level)

break;

}

if (other == N)

break;

}

}

}

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 32 / 56



The TSL Instruction, Hardware Busy Waiting

Busy waiting with TSL

Hardware locks the memory bus for exclusive use by the thread

TSL is an atomic operation, run without interruption

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 33 / 56



The Intel XCHG Instruction

Reduces the duration that XCHG locks the memory bus

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 34 / 56



Problems with Busy Waiting

If a low priority thread is holding the lock, and a high priority thread
is busy waiting

Priority inversion

The low priority thread doesn’t get the CPU and can’t release the lock

They may not get out of this scenario

Solution: the high priority thread should go to sleep instead of busy
waiting

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 35 / 56



A Non-Solution for the Producer-Consumer Problem

A fatal race condition with lost wakeup calls

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 36 / 56



Semaphore

Nonnegative integers store the number of wakeup calls

up() and down() are atomic operations

All participants must follow a prescribed sequence of down() calls

The order of down() calls is important

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 37 / 56



A Semaphore Solution for the Producer-Consumer Problem

#define N 100

typedef int semaphore;

semaphore mutex = 1;

semaphore empty = N;

semaphore full = 0;

void producer(void) {

int item;

while (1) {

item = produce();

down(&empty);

down(&mutex);

insert(item);

up(&mutex);

up(&full);

}

}

void consumer(void) {

int item;

while(1) {

down(&full);

down(&mutex);

item = delete();

up(&mutex);

up(&empty);

consume(item);

}

}

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 38 / 56



Implementations of Mutex by TSL without Busy Waiting

mutex lock and mutex unlock

Linux uses futex, fast user space mutex

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 39 / 56



Monitors

A programming language
construct

Absent in C

Available in Java

Java provides user-level threads

Java keyword synchronized

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 40 / 56



Barrier: A Library Procedure

Processes (threads) approach a barrier

When the last process arrives at the barrier, all of them are let through

Barriers are typically used at the end of a loop to synchronize the
threads that run the loop in parallel

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 41 / 56



Importance of Process Scheduling

Mainframes, running both batch and interactive processes: very
important

PC: not important at all

Networked servers: important

Mobile devices, sensor nodes?

Future: scheduling to reduce power consumption?

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 42 / 56



Characteristics of Processes

CPU-bound

I/O-bound

Characterized by lengths of CPU burst

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 43 / 56



Categories of Scheduling Algorithms

Batch

Interactive

Real time

Preemptive

Nonpreemptive

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 44 / 56



Goals of Scheduling Algorithms

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 45 / 56



Performance Metrics

Throughput: number of jobs finished per unit time

Turnaround time: in a batch system, the average time from
submission to completion

CPU utilization

Response time: in an interactive system, the time between issuing a
command and getting the result

Proportionality: user expectation

Waiting time: elapsed time minus CPU time

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 46 / 56



Scheduling in Batch Systems

First-come first-served

Shortest job first

Nonpreemptive, optimal

Shortest remaining time next

Preemptive

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 47 / 56



Shortest Job First

Running four jobs in FCFS
Running them in shortest job
first order

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 48 / 56



Scheduling in Interactive Systems

Round-robin scheduling

Priority scheduling

Unix command nice

Multiple priority queues, use FCFS within same priority

Shortest process next

Estimated, aging of past measurements

Guaranteed scheduling

Equal amount of CPU time

Lottery scheduling

Fair-share scheduling

Users, not processes, get equal amount of CPU time

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 49 / 56



Round-Robin Scheduling

Run the first process in the queue for a fixed quantum

Append it to the end of queue after it uses up its quantum

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 50 / 56



Priority Scheduling

A scheduling algorithm with four priority levels

Linux: 140 priority levels, 0 highest, 139 lowest

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 51 / 56



Scheduling in Real-Time Systems

Time plays an essential role

Categories

Hard real time
Soft real time
Periodic or aperiodic

m periodic processes, process i occurs with period Pi and takes Ci sec
of CPU time

These m processes are schedulable if
m∑
i=1

Ci

Pi
≤ 1

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 52 / 56



Thread Scheduling

User-level threads Kernel-level threads

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 53 / 56



Separation of Scheduling Policy and Mechanism

Key idea not widely implemented

Scheduling mechanism must remain in the OS kernel

Allow scheduling policy to be parameterized by user processes

Example: database management system

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 54 / 56



The Dining Philosophers Problem

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 55 / 56



A Non-solution to the Dining Philosophers Problem

J. Holly DeBlois CS 444 Operating Systems September 12, 2024 56 / 56


